It depends. For a single molecule interacting with one mode of a biphoton probe, we show that the spectroscopic information has three contributions, only one of which is a genuine two-photon contribution. When all the scattered light can be measured, solely this contribution exists and can be fully extracted using unentangled measurements. Furthermore, this two-photon contribution can, in principle, be matched by an optimised but unentangled single-photon probe. When the matter system spontaneously emits into inaccessible modes, an advantage due to entanglement can not be ruled out. In practice, time-frequency entanglement does enhance spectroscopic performance of the oft-studied weakly-pumped spontaneous parametric down conversion (PDC) probes. For two-level systems and coupled dimers, more entangled PDC probes yield more spectroscopic information, even in the presence of emission into inaccessible modes. Moreover, simple, unentangled measurements can capture between 60% and 90% of the spectroscopic information. We thus establish that biphoton spectroscopy using source-engineered PDC probes and unentangled measurements can provide tangible quantum enhancement. Our work underscores the intricate role of entanglement in single-molecule spectroscopy using quantum light.

Does entanglement enhance single-molecule pulsed biphoton spectroscopy? / Khan, Aiman; Albarelli, Francesco; Datta, Animesh. - In: QUANTUM SCIENCE AND TECHNOLOGY. - ISSN 2058-9565. - 9:3(2024). [10.1088/2058-9565/ad331b]

Does entanglement enhance single-molecule pulsed biphoton spectroscopy?

Albarelli, Francesco;
2024-01-01

Abstract

It depends. For a single molecule interacting with one mode of a biphoton probe, we show that the spectroscopic information has three contributions, only one of which is a genuine two-photon contribution. When all the scattered light can be measured, solely this contribution exists and can be fully extracted using unentangled measurements. Furthermore, this two-photon contribution can, in principle, be matched by an optimised but unentangled single-photon probe. When the matter system spontaneously emits into inaccessible modes, an advantage due to entanglement can not be ruled out. In practice, time-frequency entanglement does enhance spectroscopic performance of the oft-studied weakly-pumped spontaneous parametric down conversion (PDC) probes. For two-level systems and coupled dimers, more entangled PDC probes yield more spectroscopic information, even in the presence of emission into inaccessible modes. Moreover, simple, unentangled measurements can capture between 60% and 90% of the spectroscopic information. We thus establish that biphoton spectroscopy using source-engineered PDC probes and unentangled measurements can provide tangible quantum enhancement. Our work underscores the intricate role of entanglement in single-molecule spectroscopy using quantum light.
2024
Does entanglement enhance single-molecule pulsed biphoton spectroscopy? / Khan, Aiman; Albarelli, Francesco; Datta, Animesh. - In: QUANTUM SCIENCE AND TECHNOLOGY. - ISSN 2058-9565. - 9:3(2024). [10.1088/2058-9565/ad331b]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3036505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact