Breast cancer (BC) is among the most common neoplasms globally and is the leading cause of cancer-related mortality in women. Despite significant advancements in prevention, early diagnosis, and treatment strategies made over the past two decades, breast cancer continues to pose a significant global health challenge. One of the major obstacles in the clinical management of breast cancer patients is the high intertumoral and intratumoral heterogeneity that influences disease progression and therapeutic outcomes. The inability of preclinical experimental models to replicate this diversity has hindered the comprehensive understanding of BC pathogenesis and the development of new therapeutic strategies. An ideal experimental model must recapitulate every aspect of human BC to maintain the highest predictive validity. Therefore, a thorough understanding of each model’s inherent characteristics and limitations is essential to bridging the gap between basic research and translational medicine. In this context, omics technologies serve as powerful tools for establishing comparisons between experimental models and human tumors, which may help address BC heterogeneity and vulnerabilities. This review examines the BC models currently used in preclinical research, including cell lines, patient-derived organoids (PDOs), organ-on-chip technologies, carcinogen-induced mouse models, genetically engineered mouse models (GEMMs), and xenograft mouse models. We emphasize the advantages and disadvantages of each model and outline the most important applications of omics techniques to aid researchers in selecting the most relevant model to address their specific research questions.

Facing the Challenge to Mimic Breast Cancer Heterogeneity: Established and Emerging Experimental Preclinical Models Integrated with Omics Technologies / Ciringione, Alessia; Rizzi, Federica. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 26:10(2025). [10.3390/ijms26104572]

Facing the Challenge to Mimic Breast Cancer Heterogeneity: Established and Emerging Experimental Preclinical Models Integrated with Omics Technologies

Ciringione, Alessia;Rizzi, Federica
2025-01-01

Abstract

Breast cancer (BC) is among the most common neoplasms globally and is the leading cause of cancer-related mortality in women. Despite significant advancements in prevention, early diagnosis, and treatment strategies made over the past two decades, breast cancer continues to pose a significant global health challenge. One of the major obstacles in the clinical management of breast cancer patients is the high intertumoral and intratumoral heterogeneity that influences disease progression and therapeutic outcomes. The inability of preclinical experimental models to replicate this diversity has hindered the comprehensive understanding of BC pathogenesis and the development of new therapeutic strategies. An ideal experimental model must recapitulate every aspect of human BC to maintain the highest predictive validity. Therefore, a thorough understanding of each model’s inherent characteristics and limitations is essential to bridging the gap between basic research and translational medicine. In this context, omics technologies serve as powerful tools for establishing comparisons between experimental models and human tumors, which may help address BC heterogeneity and vulnerabilities. This review examines the BC models currently used in preclinical research, including cell lines, patient-derived organoids (PDOs), organ-on-chip technologies, carcinogen-induced mouse models, genetically engineered mouse models (GEMMs), and xenograft mouse models. We emphasize the advantages and disadvantages of each model and outline the most important applications of omics techniques to aid researchers in selecting the most relevant model to address their specific research questions.
2025
Facing the Challenge to Mimic Breast Cancer Heterogeneity: Established and Emerging Experimental Preclinical Models Integrated with Omics Technologies / Ciringione, Alessia; Rizzi, Federica. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 26:10(2025). [10.3390/ijms26104572]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3035179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact