We establish a bijective correspondence between the set T(n) of 3-dimensional triangulations with n tetrahedra and a certain class H(n) of relative handlebodies (i.e. handlebodies with boundary loops, as defined by Johannson) of genus n+1. We show that the manifolds in H(n) are hyperbolic (with geodesic boundary, and cusps corresponding to the loops), have least possible volume, and simplest boundary loops. Mirroring the elements of H(n) in their geodesic boundary we obtain a class D(n) of cusped hyperbolic manifolds, previously considered by D. Thurston and the first named author. We show that also D(n) corresponds bijectively to T(n), and we study some Dehn fillings of the manifolds in D(n). As consequences of our constructions, we also show that: - A triangulation of a 3-manifold is uniquely determined up to isotopy by its 1-skeleton; - If a 3-manifold M has an ideal triangulation with edges of valence at least 6, then M is hyperbolic and the edges are homotopically non-trivial, whence homotopic to geodesics; - Every finite group G is the isometry group of a closed hyperbolic 3-manifold with volume less than a constant times |G|^9.

Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling / Costantino, F; Frigerio, Roberto; Martelli, Bruno; Petronio, Carlo. - In: COMMENTARII MATHEMATICI HELVETICI. - ISSN 0010-2571. - 82:(2007), pp. 903-944. [10.4171/CMH/114]

Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling

PETRONIO, CARLO
2007-01-01

Abstract

We establish a bijective correspondence between the set T(n) of 3-dimensional triangulations with n tetrahedra and a certain class H(n) of relative handlebodies (i.e. handlebodies with boundary loops, as defined by Johannson) of genus n+1. We show that the manifolds in H(n) are hyperbolic (with geodesic boundary, and cusps corresponding to the loops), have least possible volume, and simplest boundary loops. Mirroring the elements of H(n) in their geodesic boundary we obtain a class D(n) of cusped hyperbolic manifolds, previously considered by D. Thurston and the first named author. We show that also D(n) corresponds bijectively to T(n), and we study some Dehn fillings of the manifolds in D(n). As consequences of our constructions, we also show that: - A triangulation of a 3-manifold is uniquely determined up to isotopy by its 1-skeleton; - If a 3-manifold M has an ideal triangulation with edges of valence at least 6, then M is hyperbolic and the edges are homotopically non-trivial, whence homotopic to geodesics; - Every finite group G is the isometry group of a closed hyperbolic 3-manifold with volume less than a constant times |G|^9.
2007
Triangulations of 3-manifolds, hyperbolic relative handlebodies, and Dehn filling / Costantino, F; Frigerio, Roberto; Martelli, Bruno; Petronio, Carlo. - In: COMMENTARII MATHEMATICI HELVETICI. - ISSN 0010-2571. - 82:(2007), pp. 903-944. [10.4171/CMH/114]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3032241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact