This study experimentally analyzes the performance of a passive thermal management system using a three-dimensional (3D) pulsating heat pipe (PHP) designed for pouch cell batteries in electric vehicles. The term "3D" refers to the complex spatial arrangement of the PHP, which features multiple interconnected loops arranged in three dimensions to maximize heat dissipation efficiency and improve temperature uniformity around the battery pack. Lithium-ion pouch cells are increasingly favored for compact and lightweight battery packs but managing their heat generation is crucial to maintaining efficiency and preventing failure. This research investigates the operational parameters of a 3D PHP by testing two working fluids (R134a and Opteon-SF33), three filling ratios (30%, 50%, and 80%), and various condenser conditions (natural and forced convection at 5 degrees C, 20 degrees C, and 35 degrees C). The effectiveness of the PHP was tested using simulated battery discharge cycles, with power inputs ranging from 5 to 200 W. The results show that the 3D PHP significantly improves battery thermal management. Additionally, Opteon-SF33, an environmentally friendly refrigerant, offers excellent heat transfer properties, making 3D PHP with this fluid a promising passive cooling solution for electric vehicle batteries.

Enhanced Passive Thermal Management for Electric Vehicle Batteries Using a 3D Pulsating Heat Pipe / Cattani, L.; Sacchelli, F.; Bozzoli, F.. - In: ENERGIES. - ISSN 1996-1073. - 18:9(2025). [10.3390/en18092306]

Enhanced Passive Thermal Management for Electric Vehicle Batteries Using a 3D Pulsating Heat Pipe

Cattani L.
;
Sacchelli F.;Bozzoli F.
2025-01-01

Abstract

This study experimentally analyzes the performance of a passive thermal management system using a three-dimensional (3D) pulsating heat pipe (PHP) designed for pouch cell batteries in electric vehicles. The term "3D" refers to the complex spatial arrangement of the PHP, which features multiple interconnected loops arranged in three dimensions to maximize heat dissipation efficiency and improve temperature uniformity around the battery pack. Lithium-ion pouch cells are increasingly favored for compact and lightweight battery packs but managing their heat generation is crucial to maintaining efficiency and preventing failure. This research investigates the operational parameters of a 3D PHP by testing two working fluids (R134a and Opteon-SF33), three filling ratios (30%, 50%, and 80%), and various condenser conditions (natural and forced convection at 5 degrees C, 20 degrees C, and 35 degrees C). The effectiveness of the PHP was tested using simulated battery discharge cycles, with power inputs ranging from 5 to 200 W. The results show that the 3D PHP significantly improves battery thermal management. Additionally, Opteon-SF33, an environmentally friendly refrigerant, offers excellent heat transfer properties, making 3D PHP with this fluid a promising passive cooling solution for electric vehicle batteries.
2025
Enhanced Passive Thermal Management for Electric Vehicle Batteries Using a 3D Pulsating Heat Pipe / Cattani, L.; Sacchelli, F.; Bozzoli, F.. - In: ENERGIES. - ISSN 1996-1073. - 18:9(2025). [10.3390/en18092306]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3027954
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact