Objectives: To comprehensively compare the disease burden among patients with RA, PsA and AS using Patient-Reported Outcome Measurement Information System (PROMIS) scores and to identify distinct patient clusters based on comorbidity profiles and PROMIS outcomes. Methods: Data from the global COVID-19 Vaccination in Autoimmune Diseases (COVAD) 2 e-survey were analysed. Patients with RA, PsA or AS undergoing treatment with DMARDs were included. PROMIS scores (global physical health, global mental health, fatigue 4a and physical function short form 10a), comorbidities and other variables were compared among the three groups, stratified by disease activity status. Unsupervised hierarchical clustering with eXtreme Gradient Boosting feature importance analysis was performed to identify patient subgroups based on comorbidity profiles and PROMIS outcomes. Results: The study included 2561 patients (1907 RA, 311 PsA, 343 AS). After adjusting for demographic factors, no significant differences in PROMIS scores were observed among the three groups, regardless of disease activity status. Clustering analysis identified four distinct patient groups: low burden, comorbid PsA/AS, low burden with depression and high-burden RA. Feature importance analysis revealed PROMIS global physical health as the strongest determinant of cluster assignment, followed by depression and diagnosis. The comorbid PsA/AS and high-burden RA clusters showed a higher prevalence of comorbidities (56.47% and 69.7%, respectively) and depression (41.18% and 41.67%, respectively), along with poorer PROMIS outcomes. Conclusion: Disease burden in inflammatory arthritis is determined by a complex interplay of factors, with physical health status and depression playing crucial roles. The identification of distinct patient clusters suggests the need for a paradigm shift towards more integrated care approaches that equally emphasize physical and mental health, regardless of the underlying diagnosis.

Disease burden in inflammatory arthritis: an unsupervised machine learning approach of the COVAD-2 e-survey dataset / Venerito, Vincenzo; Del Vescovo, Sergio; Prieto-González, Sergio; Fornaro, Marco; Cavagna, Lorenzo; Iannone, Florenzo; Kuwana, Masataka; Agarwal, Vishwesh; Day, Jessica; Joshi, Mrudula; Saha, Sreoshy; Jagtap, Kshitij; Katchamart, Wanruchada; Akarawatcharangura Goo, Phonpen; Vaidya, Binit; Velikova, Tsvetelina; Sen, Parikshit; Shinjo, Samuel Katsuyuki; Tan, Ai Lyn; Ziade, Nelly; Milchert, Marcin; Edgar Gracia-Ramos, Abraham; Caballero-Uribe, Carlo V; Null, Null; Nune, Arvind; Lilleker, James B; Pauling, John D; Wincup, Chris; Gasparyan, Armen Yuri; R, Naveen; Barman, Bhupen; Singh, Yogesh Preet; Ranjan, Rajiv; Jain, Avinash; Pandya, Sapan C; Pilania, Rakesh Kumar; Sharma, Aman; Manesh, Manoj M; Gupta, Vikas; Kavadichanda, Chengappa G; Patro, Pradeepta Sekhar; Ajmani, Sajal; Phatak, Sanat; Goswami, Rudra Prosad; Chowdhury, Abhra Chandra; Mathew, Ashish Jacob; Shenoy, Padnamabha; Asranna, Ajay; Bommakanti, Keerthi Talari; Shukla, Anuj; Pande, Arunkumar R; Gaur, Prithvi Sanjeevkumar; Mamadapur, Mahabaleshwar; Ghodke, Akanksha; Chandwar, Kunal; Darooka, Naitica; Yaadav, Praggya; Salim, Babur; Fazal, Zoha Zahid; Javaid, Mahnoor; Kardeş, Sinan; Cansu, Döndü Üsküdar; Yıldırım, Reşit; Makol, Ashima; Chatterjee, Tulika; Patel, Aarat; Giannini, Margherita; Maurier, François; Campagne, Julien; Meyer, Alain; Del Papa, Nicoletta; Sambataro, Gianluca; Fabiola, Atzeni; Govoni, Marcello; Parisi, Simone; Bocci, Elena Bartoloni; Sebastiani, Gian Domenico; Fusaro, Enrico; Sebastiani, Marco; Quartuccio, Luca; Franceschini, Franco; Sainaghi, Pier Paolo; Orsolini, Giovanni; De Angelis, Rossella; Danielli, Maria Giovanna; Grignaschi, Silvia; Giollo, Alessandro; Andreoli, Laura; Lini, Daniele; Alunno, Alessia; Traboco, Lisa S; Shaharir, Syahrul Sazliyana; Tan, Chou Luan; Wibowo, Suryo Anggoro Kusumo; Saavedra, Miguel A; Tehozol, Erick Adrian Zamora; Serrano, Jorge Rojas; La Torre, Ignacio García-De; Colunga-Pedraza, Iris J; Merayo-Chalico, Javier; Aranega, Raquel; Loarce-Martos, Jesús; Hoff, Leonardo Santos; Yoshida, Akira; Nakashima, Ran; Sato, Shinji; Kimura, Naoki; Kaneko, Yuko; Gono, Takahisa; Parodis, Ioannis; Distler, Oliver; Knitza, Johannes; Tomaras, Stylianos; Proft, Fabian Nikolai; Holzer, Marie-Therese; Schreiber, Karen; Gromova, Margarita Aleksandrovna; Aharonov, Or; Nagy-Vincze, Melinda; Griger, Zoltán; Hmamouchi, Ihsane; El bouchti, Imane; Baba, Zineb; Dey, Dzifa; Ima-Edomwonyi, Uyi; Dedeke, Ibukunoluwa; Airenakho, Emorinken; Madu, Nwankwo Henry; Yerima, Abubakar; Olaosebikan, Hakeem; Okwara, Celestine Chibuzo; Becky, A; Koussougbo, Ouma Devi; Palalane, Elisa; Langguth, Daman; Limaye, Vidya; Needham, Merrilee; Srivastav, Nilesh; Hudson, Marie; Landon-Cardinal, Océane; Shumnalieva, Russka; Gutiérrez, Carlos Enrique Toro; Zuleta, Wilmer Gerardo Rojas; Arbeláez, Álvaro; Cajas, Javier; Silva, José António Pereira; Fonseca, João Eurico; Zimba, Olena; Bohdana, Doskaliuk; So, Ho; Ugarte-Gil, Manuel Francisco; Chinchay, Lyn; Bernaola, José Proaño; Pimentel, Victorio; Hasan, A T M Tanveer; Gheita, Tamer A; Fathi, Hanan Mohamed; Mohammed, Reem Hamdy A; Chen, Yi-Ming; Harifi, Ghita; El Kibbi, Lina; Halabi, Hussein; Fuentes-Silva, Yurilís; Cabriza, Karoll; Losanto, Jonathan; Colaman, Nelly; Cachafeiro-Vilar, Antonio; Bautista, Generoso Guerra; Ho, Enrique Julio Giraldo; Nunez, Lilith Stange; Cristian, Vergara M; Báez, Jossiell Then; Alonzo, Hugo; Pastelin, Carlos Benito Santiago; Salinas, Rodrigo García; Obiols, Alejandro Quiñónez; Chávez, Nilmo; Ordóñez, Andrea Bran; Llerena, Gil Alberto Reyes; Sierra-Zorita, Radames; Arrieta, Dina; Hidalgo, Eduardo Romero; Saenz, Ricardo; Idania, Escalante M; Calapaqui, Wendy; Quezada, Ivonne; Arredondo, Gabriela; Gupta, Latika; Agarwal, Vikas; Chinoy, Hector; Gupta, Latika; Agarwal, Vikas. - In: RHEUMATOLOGY ADVANCES IN PRACTICE. - ISSN 2514-1775. - 9:2(2025). [10.1093/rap/rkaf031]

Disease burden in inflammatory arthritis: an unsupervised machine learning approach of the COVAD-2 e-survey dataset

Sebastiani, Marco;
2025-01-01

Abstract

Objectives: To comprehensively compare the disease burden among patients with RA, PsA and AS using Patient-Reported Outcome Measurement Information System (PROMIS) scores and to identify distinct patient clusters based on comorbidity profiles and PROMIS outcomes. Methods: Data from the global COVID-19 Vaccination in Autoimmune Diseases (COVAD) 2 e-survey were analysed. Patients with RA, PsA or AS undergoing treatment with DMARDs were included. PROMIS scores (global physical health, global mental health, fatigue 4a and physical function short form 10a), comorbidities and other variables were compared among the three groups, stratified by disease activity status. Unsupervised hierarchical clustering with eXtreme Gradient Boosting feature importance analysis was performed to identify patient subgroups based on comorbidity profiles and PROMIS outcomes. Results: The study included 2561 patients (1907 RA, 311 PsA, 343 AS). After adjusting for demographic factors, no significant differences in PROMIS scores were observed among the three groups, regardless of disease activity status. Clustering analysis identified four distinct patient groups: low burden, comorbid PsA/AS, low burden with depression and high-burden RA. Feature importance analysis revealed PROMIS global physical health as the strongest determinant of cluster assignment, followed by depression and diagnosis. The comorbid PsA/AS and high-burden RA clusters showed a higher prevalence of comorbidities (56.47% and 69.7%, respectively) and depression (41.18% and 41.67%, respectively), along with poorer PROMIS outcomes. Conclusion: Disease burden in inflammatory arthritis is determined by a complex interplay of factors, with physical health status and depression playing crucial roles. The identification of distinct patient clusters suggests the need for a paradigm shift towards more integrated care approaches that equally emphasize physical and mental health, regardless of the underlying diagnosis.
2025
Disease burden in inflammatory arthritis: an unsupervised machine learning approach of the COVAD-2 e-survey dataset / Venerito, Vincenzo; Del Vescovo, Sergio; Prieto-González, Sergio; Fornaro, Marco; Cavagna, Lorenzo; Iannone, Florenzo; Kuwana, Masataka; Agarwal, Vishwesh; Day, Jessica; Joshi, Mrudula; Saha, Sreoshy; Jagtap, Kshitij; Katchamart, Wanruchada; Akarawatcharangura Goo, Phonpen; Vaidya, Binit; Velikova, Tsvetelina; Sen, Parikshit; Shinjo, Samuel Katsuyuki; Tan, Ai Lyn; Ziade, Nelly; Milchert, Marcin; Edgar Gracia-Ramos, Abraham; Caballero-Uribe, Carlo V; Null, Null; Nune, Arvind; Lilleker, James B; Pauling, John D; Wincup, Chris; Gasparyan, Armen Yuri; R, Naveen; Barman, Bhupen; Singh, Yogesh Preet; Ranjan, Rajiv; Jain, Avinash; Pandya, Sapan C; Pilania, Rakesh Kumar; Sharma, Aman; Manesh, Manoj M; Gupta, Vikas; Kavadichanda, Chengappa G; Patro, Pradeepta Sekhar; Ajmani, Sajal; Phatak, Sanat; Goswami, Rudra Prosad; Chowdhury, Abhra Chandra; Mathew, Ashish Jacob; Shenoy, Padnamabha; Asranna, Ajay; Bommakanti, Keerthi Talari; Shukla, Anuj; Pande, Arunkumar R; Gaur, Prithvi Sanjeevkumar; Mamadapur, Mahabaleshwar; Ghodke, Akanksha; Chandwar, Kunal; Darooka, Naitica; Yaadav, Praggya; Salim, Babur; Fazal, Zoha Zahid; Javaid, Mahnoor; Kardeş, Sinan; Cansu, Döndü Üsküdar; Yıldırım, Reşit; Makol, Ashima; Chatterjee, Tulika; Patel, Aarat; Giannini, Margherita; Maurier, François; Campagne, Julien; Meyer, Alain; Del Papa, Nicoletta; Sambataro, Gianluca; Fabiola, Atzeni; Govoni, Marcello; Parisi, Simone; Bocci, Elena Bartoloni; Sebastiani, Gian Domenico; Fusaro, Enrico; Sebastiani, Marco; Quartuccio, Luca; Franceschini, Franco; Sainaghi, Pier Paolo; Orsolini, Giovanni; De Angelis, Rossella; Danielli, Maria Giovanna; Grignaschi, Silvia; Giollo, Alessandro; Andreoli, Laura; Lini, Daniele; Alunno, Alessia; Traboco, Lisa S; Shaharir, Syahrul Sazliyana; Tan, Chou Luan; Wibowo, Suryo Anggoro Kusumo; Saavedra, Miguel A; Tehozol, Erick Adrian Zamora; Serrano, Jorge Rojas; La Torre, Ignacio García-De; Colunga-Pedraza, Iris J; Merayo-Chalico, Javier; Aranega, Raquel; Loarce-Martos, Jesús; Hoff, Leonardo Santos; Yoshida, Akira; Nakashima, Ran; Sato, Shinji; Kimura, Naoki; Kaneko, Yuko; Gono, Takahisa; Parodis, Ioannis; Distler, Oliver; Knitza, Johannes; Tomaras, Stylianos; Proft, Fabian Nikolai; Holzer, Marie-Therese; Schreiber, Karen; Gromova, Margarita Aleksandrovna; Aharonov, Or; Nagy-Vincze, Melinda; Griger, Zoltán; Hmamouchi, Ihsane; El bouchti, Imane; Baba, Zineb; Dey, Dzifa; Ima-Edomwonyi, Uyi; Dedeke, Ibukunoluwa; Airenakho, Emorinken; Madu, Nwankwo Henry; Yerima, Abubakar; Olaosebikan, Hakeem; Okwara, Celestine Chibuzo; Becky, A; Koussougbo, Ouma Devi; Palalane, Elisa; Langguth, Daman; Limaye, Vidya; Needham, Merrilee; Srivastav, Nilesh; Hudson, Marie; Landon-Cardinal, Océane; Shumnalieva, Russka; Gutiérrez, Carlos Enrique Toro; Zuleta, Wilmer Gerardo Rojas; Arbeláez, Álvaro; Cajas, Javier; Silva, José António Pereira; Fonseca, João Eurico; Zimba, Olena; Bohdana, Doskaliuk; So, Ho; Ugarte-Gil, Manuel Francisco; Chinchay, Lyn; Bernaola, José Proaño; Pimentel, Victorio; Hasan, A T M Tanveer; Gheita, Tamer A; Fathi, Hanan Mohamed; Mohammed, Reem Hamdy A; Chen, Yi-Ming; Harifi, Ghita; El Kibbi, Lina; Halabi, Hussein; Fuentes-Silva, Yurilís; Cabriza, Karoll; Losanto, Jonathan; Colaman, Nelly; Cachafeiro-Vilar, Antonio; Bautista, Generoso Guerra; Ho, Enrique Julio Giraldo; Nunez, Lilith Stange; Cristian, Vergara M; Báez, Jossiell Then; Alonzo, Hugo; Pastelin, Carlos Benito Santiago; Salinas, Rodrigo García; Obiols, Alejandro Quiñónez; Chávez, Nilmo; Ordóñez, Andrea Bran; Llerena, Gil Alberto Reyes; Sierra-Zorita, Radames; Arrieta, Dina; Hidalgo, Eduardo Romero; Saenz, Ricardo; Idania, Escalante M; Calapaqui, Wendy; Quezada, Ivonne; Arredondo, Gabriela; Gupta, Latika; Agarwal, Vikas; Chinoy, Hector; Gupta, Latika; Agarwal, Vikas. - In: RHEUMATOLOGY ADVANCES IN PRACTICE. - ISSN 2514-1775. - 9:2(2025). [10.1093/rap/rkaf031]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3021833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact