We investigate some of the effects of the lack of compactness in the critical Folland-Stein-Sobolev embedding in very general (possible non-smooth) domains, by proving via De Giorgi's Γ -convergence techniques that optimal functions for a natural subcritical approximations of the Sobolev quotient concentrate energy at one point. In the second part of the paper, we try to restore the compactness by extending the celebrated Global Compactness result to the Heisenberg group via a completely different approach with respect to the original one by Struwe (Math. Z., 1984).
Struwe's Global Compactness and energy approximation of the critical Sobolev embedding in the Heisenberg group / Palatucci, Giampiero; Piccinini, Mirco; Temperini, Letizia. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8266. - (2024). [10.1515/acv-2024-0044]
Struwe's Global Compactness and energy approximation of the critical Sobolev embedding in the Heisenberg group
Palatucci, Giampiero;Piccinini, Mirco
;
2024-01-01
Abstract
We investigate some of the effects of the lack of compactness in the critical Folland-Stein-Sobolev embedding in very general (possible non-smooth) domains, by proving via De Giorgi's Γ -convergence techniques that optimal functions for a natural subcritical approximations of the Sobolev quotient concentrate energy at one point. In the second part of the paper, we try to restore the compactness by extending the celebrated Global Compactness result to the Heisenberg group via a completely different approach with respect to the original one by Struwe (Math. Z., 1984).File | Dimensione | Formato | |
---|---|---|---|
Palatucci-Piccinini-Temperini_AdvCalcVar2024.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
586.23 kB
Formato
Adobe PDF
|
586.23 kB | Adobe PDF | Visualizza/Apri |
Palatucci-Piccinini-Temperini_Adv.Calc.Var._2024.pdf
solo utenti autorizzati
Tipologia:
Versione (PDF) editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.