Flood-control reservoirs are often used as a structural measure to mitigate fluvial floods, and numerical models are a fundamental tool for assessing their effectiveness. This work aims to analyze the suitability of fully 2D shallow-water models to simulate these systems by adopting internal boundary conditions to describe hydraulic structures (i.e., dams) and by using a parallelized code to reduce the computational burden. The 2D results are also compared with the more established approach of coupling a 1D model for the river and a 0D model for the reservoir. Two test cases, including an in-stream reservoir and an off-stream basin, both located in Italy, are considered. Results show that the fully 2D model can effectively handle the simulation of a complex flood-control system. Moreover, compared with the 0D–1D model, it captures the velocity field and the filling/emptying process of the reservoir more realistically, especially for off-stream reservoirs. Conversely, when the basin is characterized by very limited flood dynamics, the two approaches provide similar results (maximum levels in the reservoir differ by less than 10 cm, and peak discharges by about 5%). Thanks to parallelization and the inclusion of internal boundary conditions, fully 2D models can be applied not only for local hydrodynamic analyses but also for river-scale studies, including flood-control reservoirs, with reasonable computational effort (i.e., ratios of physical to computational times on the order of 30–100).

Simulation of Flood-Control Reservoirs: Comparing Fully 2D and 0D–1D Models / Dazzi, Susanna; Verbeni, Riccardo; Mignosa, Paolo; Vacondio, Renato. - In: HYDROLOGY. - ISSN 2306-5338. - 11:11(2024). [10.3390/hydrology11110180]

Simulation of Flood-Control Reservoirs: Comparing Fully 2D and 0D–1D Models

Dazzi, Susanna;Verbeni, Riccardo;Mignosa, Paolo;Vacondio, Renato
2024-01-01

Abstract

Flood-control reservoirs are often used as a structural measure to mitigate fluvial floods, and numerical models are a fundamental tool for assessing their effectiveness. This work aims to analyze the suitability of fully 2D shallow-water models to simulate these systems by adopting internal boundary conditions to describe hydraulic structures (i.e., dams) and by using a parallelized code to reduce the computational burden. The 2D results are also compared with the more established approach of coupling a 1D model for the river and a 0D model for the reservoir. Two test cases, including an in-stream reservoir and an off-stream basin, both located in Italy, are considered. Results show that the fully 2D model can effectively handle the simulation of a complex flood-control system. Moreover, compared with the 0D–1D model, it captures the velocity field and the filling/emptying process of the reservoir more realistically, especially for off-stream reservoirs. Conversely, when the basin is characterized by very limited flood dynamics, the two approaches provide similar results (maximum levels in the reservoir differ by less than 10 cm, and peak discharges by about 5%). Thanks to parallelization and the inclusion of internal boundary conditions, fully 2D models can be applied not only for local hydrodynamic analyses but also for river-scale studies, including flood-control reservoirs, with reasonable computational effort (i.e., ratios of physical to computational times on the order of 30–100).
2024
Simulation of Flood-Control Reservoirs: Comparing Fully 2D and 0D–1D Models / Dazzi, Susanna; Verbeni, Riccardo; Mignosa, Paolo; Vacondio, Renato. - In: HYDROLOGY. - ISSN 2306-5338. - 11:11(2024). [10.3390/hydrology11110180]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3005974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact