This paper works on detecting a person in bed for sleep routine and sleep pattern monitoring based on the Micro-Electro-Mechanical Systems (MEMS) accelerometer and Internet of Things (IoT) embedded system board. This work provides sleep information, patient assessment, and elderly care for patients who live alone via tele-distance to doctors or family members. About 216,000 pieces of acceleration data were collected, including three classes: no person in bed, a static laying position, and a moving state for Artificial Intelligence (AI) application. Six well-known Machine-Learning (ML) algorithms were evaluated with precision, recall, F1-score, and accuracy in the workstation before implementing in the STM32-microcontroller for real-time state classification. The four best algorithms were selected to be programmed into the IoT board and applied for real-time testing. The results demonstrate the high accuracy of the ML performance, more than 99%, and the Classification and Regression Tree algorithm is among the best models with a light code size of 1583 bytes. The smart bed information is sent to the IoT dashboard of Node-RED via a Message Queuing Telemetry broker (MQTT).

Artificial Intelligence Implementation in Internet of Things Embedded System for Real-Time Person Presence in Bed Detection and Sleep Behaviour Monitor / Hoang, M. L.; Matrella, G.; Ciampolini, P.. - In: ELECTRONICS. - ISSN 2079-9292. - 13:11(2024). [10.3390/electronics13112210]

Artificial Intelligence Implementation in Internet of Things Embedded System for Real-Time Person Presence in Bed Detection and Sleep Behaviour Monitor

Hoang M. L.
;
Matrella G.;Ciampolini P.
2024-01-01

Abstract

This paper works on detecting a person in bed for sleep routine and sleep pattern monitoring based on the Micro-Electro-Mechanical Systems (MEMS) accelerometer and Internet of Things (IoT) embedded system board. This work provides sleep information, patient assessment, and elderly care for patients who live alone via tele-distance to doctors or family members. About 216,000 pieces of acceleration data were collected, including three classes: no person in bed, a static laying position, and a moving state for Artificial Intelligence (AI) application. Six well-known Machine-Learning (ML) algorithms were evaluated with precision, recall, F1-score, and accuracy in the workstation before implementing in the STM32-microcontroller for real-time state classification. The four best algorithms were selected to be programmed into the IoT board and applied for real-time testing. The results demonstrate the high accuracy of the ML performance, more than 99%, and the Classification and Regression Tree algorithm is among the best models with a light code size of 1583 bytes. The smart bed information is sent to the IoT dashboard of Node-RED via a Message Queuing Telemetry broker (MQTT).
2024
Artificial Intelligence Implementation in Internet of Things Embedded System for Real-Time Person Presence in Bed Detection and Sleep Behaviour Monitor / Hoang, M. L.; Matrella, G.; Ciampolini, P.. - In: ELECTRONICS. - ISSN 2079-9292. - 13:11(2024). [10.3390/electronics13112210]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/3001693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact