Voltage-gated sodium channels (VGSCs) are macromolecular assemblies composed of a number of proteins regulating channel conductance and properties. VGSCs generate Na+ current (I-Na) in myocytes and play fundamental roles in excitability and impulse conduction in the heart. Moreover, VGSCs condition mechanical properties of the myocardium, a process that appears to involve the late component of I-Na. Variants in the gene SCN1B, encoding the VGSC beta 1- and beta 1B-subunits, result in inherited neurological disorders and cardiac arrhythmias. But the precise contributions of beta 1/beta 1B-subunits and VGSC integrity to the overall function of the adult heart remain to be clarified. For this purpose, adult mice with cardiac-restricted, inducible deletion of Scn1b (conditional knockout, cKO) were studied. Myocytes from cKO mice had increased densities of fast (+20%)- and slow (+140%)-inactivating components of I-Na, with respect to control cells. By echocardiography and invasive hemodynamics, systolic function was preserved in cKO mice, but diastolic properties and ventricular compliance were compromised, with respect to control animals. Importantly, inhibition of late I-Na with GS967 normalized left ventricular filling pattern and isovolumic relaxation time in cKO mice. At the cellular level, cKO myocytes presented delayed kinetics of Ca2+ transients and cell mechanics, defects that were corrected by inhibition of I-Na. Collectively, these results document that VGSC beta 1/beta 1B-subunits modulate electrical and mechanical function of the heart by regulating, at least in part, Na+ influx in cardiomyocytes.NEW & NOTEWORTHY We have investigated the consequences of deletion of Scn1b, the gene encoding voltage-gated sodium channel beta 1-subunits, on myocyte and cardiac function. Our findings support the notion that Scn1b expression controls properties of Na+ influx and Ca2+ cycling in cardiomyocytes affecting the modality of cell contraction and relaxation. These effects at the cellular level condition electrical recovery and diastolic function in vivo, substantiating the multifunctional role of beta 1-subunits in the physiology of the heart.
Scn1b expression in the adult mouse heart modulates Na+ influx in myocytes and reveals a mechanistic link between Na+ entry and diastolic function / Cervantes, Daniel O.; Pizzo, Emanuele; Ketkar, Harshada; Parambath, Sreema P.; Tang, Samantha; Cianflone, Eleonora; Cannata, Antonio; Vinukonda, Govindaiah; Jain, Sudhir; Jacobson, Jason T.; Rota, Marcello. - In: AMERICAN JOURNAL OF PHYSIOLOGY. HEART AND CIRCULATORY PHYSIOLOGY. - ISSN 0363-6135. - 322:6(2022). [10.1152/ajpheart.00465.2021]
Scn1b expression in the adult mouse heart modulates Na+ influx in myocytes and reveals a mechanistic link between Na+ entry and diastolic function
Pizzo, Emanuele;
2022-01-01
Abstract
Voltage-gated sodium channels (VGSCs) are macromolecular assemblies composed of a number of proteins regulating channel conductance and properties. VGSCs generate Na+ current (I-Na) in myocytes and play fundamental roles in excitability and impulse conduction in the heart. Moreover, VGSCs condition mechanical properties of the myocardium, a process that appears to involve the late component of I-Na. Variants in the gene SCN1B, encoding the VGSC beta 1- and beta 1B-subunits, result in inherited neurological disorders and cardiac arrhythmias. But the precise contributions of beta 1/beta 1B-subunits and VGSC integrity to the overall function of the adult heart remain to be clarified. For this purpose, adult mice with cardiac-restricted, inducible deletion of Scn1b (conditional knockout, cKO) were studied. Myocytes from cKO mice had increased densities of fast (+20%)- and slow (+140%)-inactivating components of I-Na, with respect to control cells. By echocardiography and invasive hemodynamics, systolic function was preserved in cKO mice, but diastolic properties and ventricular compliance were compromised, with respect to control animals. Importantly, inhibition of late I-Na with GS967 normalized left ventricular filling pattern and isovolumic relaxation time in cKO mice. At the cellular level, cKO myocytes presented delayed kinetics of Ca2+ transients and cell mechanics, defects that were corrected by inhibition of I-Na. Collectively, these results document that VGSC beta 1/beta 1B-subunits modulate electrical and mechanical function of the heart by regulating, at least in part, Na+ influx in cardiomyocytes.NEW & NOTEWORTHY We have investigated the consequences of deletion of Scn1b, the gene encoding voltage-gated sodium channel beta 1-subunits, on myocyte and cardiac function. Our findings support the notion that Scn1b expression controls properties of Na+ influx and Ca2+ cycling in cardiomyocytes affecting the modality of cell contraction and relaxation. These effects at the cellular level condition electrical recovery and diastolic function in vivo, substantiating the multifunctional role of beta 1-subunits in the physiology of the heart.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.