Kinases are believed to play a crucial role in the expression and activation of inflammatory mediators in the airway, in T-cell function and airway remodelling. Important kinases such as Inhibitor of kappaB kinase (IKK)2, mitogen activated protein (MAP) kinases and phsopho-inositol (PI)3 kinase regulate inflammation either through activation of pro-inflammatory transcription factors such as activating protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB), which are activated in airway disease, or through regulation of mRNA half-life. Selective kinase inhibitors have been developed which reduce inflammation and some characteristics of disease in animal models. Targeting specific kinases that are overexpressed or over active in disease should allow for selective treatment of respiratory diseases. Interest in this area has intensified due to the success of the specific Abelson murine leukaemia viral oncogene (Abl) kinase inhibitor imatinib mesylate (Gleevec) in the treatment of chronic myelogenous leukaemia. Encouraging data from animal models and primary cells and early Phase I and II studies in other diseases suggest that inhibitors of p38 MAP kinase and IKK2 may prove to be useful novel therapies in the treatment of severe asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and other inflammatory airway diseases.
Kinase inhibitors and airway inflammation / Adcock, Im; Chung, Kf; Caramori, Gaetano; Ito, K.. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - 533:1-3(2006), pp. 118-132.
Kinase inhibitors and airway inflammation
CARAMORI, Gaetano;
2006-01-01
Abstract
Kinases are believed to play a crucial role in the expression and activation of inflammatory mediators in the airway, in T-cell function and airway remodelling. Important kinases such as Inhibitor of kappaB kinase (IKK)2, mitogen activated protein (MAP) kinases and phsopho-inositol (PI)3 kinase regulate inflammation either through activation of pro-inflammatory transcription factors such as activating protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB), which are activated in airway disease, or through regulation of mRNA half-life. Selective kinase inhibitors have been developed which reduce inflammation and some characteristics of disease in animal models. Targeting specific kinases that are overexpressed or over active in disease should allow for selective treatment of respiratory diseases. Interest in this area has intensified due to the success of the specific Abelson murine leukaemia viral oncogene (Abl) kinase inhibitor imatinib mesylate (Gleevec) in the treatment of chronic myelogenous leukaemia. Encouraging data from animal models and primary cells and early Phase I and II studies in other diseases suggest that inhibitors of p38 MAP kinase and IKK2 may prove to be useful novel therapies in the treatment of severe asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis and other inflammatory airway diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.