Aggregates of cyanine dyes are currently investigated as promising materials for advanced electronic and photonic applications. The spectral properties of aggregates of cyanine dyes can be tuned by altering the supramolecular packing, which is affected by the length of the dye, the presence of alkyl chains, or the nature of the counterions. In this work, we present a joint experimental and theoretical study of a family of cyanine dyes forming aggregates of different types according to the length of the polymethinic chain. Linear and nonlinear optical spectra of aggregates are rationalized here in terms of an essential-state model accounting for intermolecular interactions together with the molecular polarizability and vibronic coupling. A strategy is implemented to properly account for screening effects, distinguishing between electrostatic intermolecular interactions relevant to the ground state (mean-field effect) and the interactions relevant to the excited states (excitonic effects). To the best of our knowledge, this is the first attempt to simulate nonlinear spectral properties of aggregates of symmetric dyes accounting for molecular vibrations.
Aggregates of Cyanine Dyes: When Molecular Vibrations and Electrostatic Screening Make the Difference / Bertocchi, Francesco; Delledonne, Andrea; Vargas-Nadal, Guillem; Terenziani, Francesca; Painelli, Anna; Sissa, Cristina. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 127:21(2023), pp. 10185-10196. [10.1021/acs.jpcc.3c01253]
Aggregates of Cyanine Dyes: When Molecular Vibrations and Electrostatic Screening Make the Difference
Bertocchi, Francesco;Delledonne, Andrea;Vargas-Nadal, Guillem;Terenziani, Francesca;Painelli, Anna;Sissa, Cristina
2023-01-01
Abstract
Aggregates of cyanine dyes are currently investigated as promising materials for advanced electronic and photonic applications. The spectral properties of aggregates of cyanine dyes can be tuned by altering the supramolecular packing, which is affected by the length of the dye, the presence of alkyl chains, or the nature of the counterions. In this work, we present a joint experimental and theoretical study of a family of cyanine dyes forming aggregates of different types according to the length of the polymethinic chain. Linear and nonlinear optical spectra of aggregates are rationalized here in terms of an essential-state model accounting for intermolecular interactions together with the molecular polarizability and vibronic coupling. A strategy is implemented to properly account for screening effects, distinguishing between electrostatic intermolecular interactions relevant to the ground state (mean-field effect) and the interactions relevant to the excited states (excitonic effects). To the best of our knowledge, this is the first attempt to simulate nonlinear spectral properties of aggregates of symmetric dyes accounting for molecular vibrations.File | Dimensione | Formato | |
---|---|---|---|
acs.jpcc.3c01253-cianine2023.pdf
accesso aperto
Tipologia:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
3.61 MB
Formato
Adobe PDF
|
3.61 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.