: Here we study standard and higher-order birth-death processes on fully connected networks, within the perspective of large-deviation theory [also referred to as the Wentzel-Kramers-Brillouin (WKB) method in some contexts]. We obtain a general expression for the leading and next-to-leading terms of the stationary probability distribution of the fraction of "active" sites as a function of parameters and network size N. We reproduce several results from the literature and, in particular, we derive all the moments of the stationary distribution for the q-susceptible-infected-susceptible (q-SIS) model, i.e., a high-order epidemic model requiring q active ("infected") sites to activate an additional one. We uncover a very rich scenario for the fluctuations of the fraction of active sites, with nontrivial finite-size-scaling properties. In particular, we show that the variance-to-mean ratio diverges at criticality for [1≤q≤3], with a maximal variability at q=2, confirming that complex-contagion processes can exhibit peculiar scaling features including wild variability. Moreover, the leading order in a large-deviation approach does not suffice to describe them: next-to-leading terms are essential to capture the intrinsic singularity at the origin of systems with absorbing states. Some possible extensions of this work are also discussed.

Anomalous finite-size scaling in higher-order processes with absorbing states / Vezzani, Alessandro; Muñoz, Miguel A; Burioni, Raffaella. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 107:1-1(2023), pp. 014105-014113. [10.1103/PhysRevE.107.014105]

Anomalous finite-size scaling in higher-order processes with absorbing states

Vezzani, Alessandro;Burioni, Raffaella
2023-01-01

Abstract

: Here we study standard and higher-order birth-death processes on fully connected networks, within the perspective of large-deviation theory [also referred to as the Wentzel-Kramers-Brillouin (WKB) method in some contexts]. We obtain a general expression for the leading and next-to-leading terms of the stationary probability distribution of the fraction of "active" sites as a function of parameters and network size N. We reproduce several results from the literature and, in particular, we derive all the moments of the stationary distribution for the q-susceptible-infected-susceptible (q-SIS) model, i.e., a high-order epidemic model requiring q active ("infected") sites to activate an additional one. We uncover a very rich scenario for the fluctuations of the fraction of active sites, with nontrivial finite-size-scaling properties. In particular, we show that the variance-to-mean ratio diverges at criticality for [1≤q≤3], with a maximal variability at q=2, confirming that complex-contagion processes can exhibit peculiar scaling features including wild variability. Moreover, the leading order in a large-deviation approach does not suffice to describe them: next-to-leading terms are essential to capture the intrinsic singularity at the origin of systems with absorbing states. Some possible extensions of this work are also discussed.
2023
Anomalous finite-size scaling in higher-order processes with absorbing states / Vezzani, Alessandro; Muñoz, Miguel A; Burioni, Raffaella. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 107:1-1(2023), pp. 014105-014113. [10.1103/PhysRevE.107.014105]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2939613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact