We show that the existence of a left-invariant pluriclosed Hermitian metric on a unimodular Lie group with a left-invariant abelian complex structure forces the group to be 2-step nilpotent. Moreover, we prove that the pluriclosed flow starting from a left-invariant Hermitian metric on a 2-step nilpotent Lie group preserves the Strominger Kahler-like condition.
Pluriclosed and Strominger Kähler–like metrics compatible with abelian complex structures / Fino, A.; Tardini, N.; Vezzoni, L.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 54:5(2022), pp. 1862-1872. [10.1112/blms.12661]
Pluriclosed and Strominger Kähler–like metrics compatible with abelian complex structures
Tardini N.;
2022-01-01
Abstract
We show that the existence of a left-invariant pluriclosed Hermitian metric on a unimodular Lie group with a left-invariant abelian complex structure forces the group to be 2-step nilpotent. Moreover, we prove that the pluriclosed flow starting from a left-invariant Hermitian metric on a 2-step nilpotent Lie group preserves the Strominger Kahler-like condition.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.