Friedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis. Here we examined the metabolic, neuroprotective, and frataxin-inducing effects of glucagon-like peptide-1 (GLP-1) analogs in in vivo and in vitro models and in patients with Friedreich ataxia. The GLP-1 analog exenatide improved glucose homeostasis of frataxin-deficient mice through enhanced insulin content and secretion in pancreatic beta cells. Exenatide induced frataxin and iron-sulfur cluster-containing proteins in it cells and brain and was protective to sensory neurons in dorsal root ganglia. GLP-1 analogs also induced frataxin expression, reduced oxidative stress, and improved mitochondrial function in Friedreich ataxia patients' induced pluripotent stem cell-derived beta cells and sensory neurons. The frataxin-inducing effect of exenatide was confirmed in a pilot trial in Friedreich ataxia patients, showing modest frataxin induction in platelets over a 5-week treatment course. Taken together, GLP-1 analogs improve mitochondrial function in frataxin-deficient cells and induce frataxin expression. Our findings identify incretin receptors as a therapeutic target in Friedreich ataxia.

Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia / Igoillo-Esteve, Mariana; Oliveira, Ana F; Cosentino, Cristina; Fantuzzi, Federica; Demarez, Céline; Toivonen, Sanna; Hu, Amélie; Chintawar, Satyan; Lopes, Miguel; Pachera, Nathalie; Cai, Ying; Abdulkarim, Baroj; Rai, Myriam; Marselli, Lorella; Marchetti, Piero; Tariq, Mohammad; Jonas, Jean-Christophe; Boscolo, Marina; Pandolfo, Massimo; Eizirik, Décio L; Cnop, Miriam. - In: JCI INSIGHT. - ISSN 2379-3708. - 5:2(2020). [10.1172/jci.insight.134221]

Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia

Fantuzzi, Federica;Marchetti, Piero;
2020-01-01

Abstract

Friedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis. Here we examined the metabolic, neuroprotective, and frataxin-inducing effects of glucagon-like peptide-1 (GLP-1) analogs in in vivo and in vitro models and in patients with Friedreich ataxia. The GLP-1 analog exenatide improved glucose homeostasis of frataxin-deficient mice through enhanced insulin content and secretion in pancreatic beta cells. Exenatide induced frataxin and iron-sulfur cluster-containing proteins in it cells and brain and was protective to sensory neurons in dorsal root ganglia. GLP-1 analogs also induced frataxin expression, reduced oxidative stress, and improved mitochondrial function in Friedreich ataxia patients' induced pluripotent stem cell-derived beta cells and sensory neurons. The frataxin-inducing effect of exenatide was confirmed in a pilot trial in Friedreich ataxia patients, showing modest frataxin induction in platelets over a 5-week treatment course. Taken together, GLP-1 analogs improve mitochondrial function in frataxin-deficient cells and induce frataxin expression. Our findings identify incretin receptors as a therapeutic target in Friedreich ataxia.
2020
Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia / Igoillo-Esteve, Mariana; Oliveira, Ana F; Cosentino, Cristina; Fantuzzi, Federica; Demarez, Céline; Toivonen, Sanna; Hu, Amélie; Chintawar, Satyan; Lopes, Miguel; Pachera, Nathalie; Cai, Ying; Abdulkarim, Baroj; Rai, Myriam; Marselli, Lorella; Marchetti, Piero; Tariq, Mohammad; Jonas, Jean-Christophe; Boscolo, Marina; Pandolfo, Massimo; Eizirik, Décio L; Cnop, Miriam. - In: JCI INSIGHT. - ISSN 2379-3708. - 5:2(2020). [10.1172/jci.insight.134221]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2938635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact