Two years after its spreading, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still responsible for more than 2000 deaths per day worldwide, despite vaccines and monoclonal antibody countermeasures. Therefore, there is a need to understand the immune-inflammatory pathways that prompt the manifestation of the disease to identify a novel potential target for pharmacological intervention. In this context, the characterization of the main players in the SARS-CoV-2-induced cytokine storm is mandatory. To date, the most characterized have been IL-6 and the class I and II interferons, while less is known about the proinflammatory cytokine IL-1β and class III interferons. Here, we report a preliminary study aimed at the characterization of the lung inflammatory context in COVID-19 patients, with a special focus on IFN-λ and IL-1β. By investigating IFN and inflammatory cytokine patterns by IHC in 10 deceased patients due to COVID-19 infection, compared to 10 control subjects, we reveal that while IFN-β production was increased in COVID-19 patients, IFN-λ was almost abolished. At the same time, the levels of IL-1β were dramatically improved, while IL-6 lung levels seem to be unaffected by the infection. Our findings highlight a central role of IL-1β in prompting lung inflammation after SARS-CoV-2 infection. Together, we show that IFN-λ is negatively affected by viral infection, supporting the idea that IFN-λ administration together with the pharmaceutical blockage of IL-1β represents a promising approach to revert the COVID-19-induced cytokine storm.

SARS-CoV-2 Infection Prompts IL-1β-Mediated Inflammation and Reduces IFN-λ Expression in Human Lung Tissue / Vezzani, Bianca; Neri, Margherita; D'Errico, Stefano; Papi, Alberto; Contoli, Marco; Giorgi, Carlotta. - In: PATHOGENS. - ISSN 2076-0817. - 11:11(2022), pp. 1390-N/A. [10.3390/pathogens11111390]

SARS-CoV-2 Infection Prompts IL-1β-Mediated Inflammation and Reduces IFN-λ Expression in Human Lung Tissue

Vezzani, Bianca;
2022-01-01

Abstract

Two years after its spreading, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still responsible for more than 2000 deaths per day worldwide, despite vaccines and monoclonal antibody countermeasures. Therefore, there is a need to understand the immune-inflammatory pathways that prompt the manifestation of the disease to identify a novel potential target for pharmacological intervention. In this context, the characterization of the main players in the SARS-CoV-2-induced cytokine storm is mandatory. To date, the most characterized have been IL-6 and the class I and II interferons, while less is known about the proinflammatory cytokine IL-1β and class III interferons. Here, we report a preliminary study aimed at the characterization of the lung inflammatory context in COVID-19 patients, with a special focus on IFN-λ and IL-1β. By investigating IFN and inflammatory cytokine patterns by IHC in 10 deceased patients due to COVID-19 infection, compared to 10 control subjects, we reveal that while IFN-β production was increased in COVID-19 patients, IFN-λ was almost abolished. At the same time, the levels of IL-1β were dramatically improved, while IL-6 lung levels seem to be unaffected by the infection. Our findings highlight a central role of IL-1β in prompting lung inflammation after SARS-CoV-2 infection. Together, we show that IFN-λ is negatively affected by viral infection, supporting the idea that IFN-λ administration together with the pharmaceutical blockage of IL-1β represents a promising approach to revert the COVID-19-induced cytokine storm.
2022
SARS-CoV-2 Infection Prompts IL-1β-Mediated Inflammation and Reduces IFN-λ Expression in Human Lung Tissue / Vezzani, Bianca; Neri, Margherita; D'Errico, Stefano; Papi, Alberto; Contoli, Marco; Giorgi, Carlotta. - In: PATHOGENS. - ISSN 2076-0817. - 11:11(2022), pp. 1390-N/A. [10.3390/pathogens11111390]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2937470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact