Background: Airway inflammation and airway hyperresponsiveness (AHR) are pivotal characteristics of equine asthma. Lipopolysaccharide (LPS) may have a central role in modulating airway inflammation and dysfunction. Therefore, the aim of this study was to match the inflammatory and contractile profile in LPS-challenged equine isolated bronchi to identify molecular targets potentially suitable to counteract AHR in asthmatic horses. Methods: Equine isolated bronchi were incubated overnight with LPS (0.1-100 ng/ml). The contractile response to electrical field stimulation (EFS) and the levels of cytokines, chemokines, and neurokinin A (NKA) were quantified. The role of capsaicin sensitive-sensory nerves, neurokinin-2 (NK2) receptor, transient receptor potential vanilloid type 1 receptors (TRPV1), and epithelium were also investigated. Results: LPS 1 ng/ml elicited AHR to EFS (+238.17 ± 25.20% P < 0.001 vs. control). LPS significantly (P < 0.05 vs. control) increased the levels of IL-4 (+36.08 ± 1.62%), IL-5 (+38.60 ± 3.58%), IL-6 (+33.79 ± 2.59%), IL-13 (+40.91 ± 1.93%), IL-1β (+1650.16 ± 71.16%), IL-33 (+88.14 ± 8.93%), TGF-β (22.29 ± 1.03%), TNF-α (+56.13 ± 4.61%), CXCL-8 (+98.49 ± 17.70%), EOTAXIN (+32.26 ± 2.27%), MCP-1 (+49.63 ± 4.59%), RANTES (+36.38 ± 2.24%), and NKA (+112.81 ± 6.42%). Capsaicin sensitive-sensory nerves, NK2 receptor, and TRPV1 were generally involved in the LPS-mediated inflammation. Epithelium removal modulated the release of IL-1β, IL-33, and TGF-β. Only the levels of IL-6 fitted with AHR to a wide range of EFS frequencies, an effect significantly (P < 0.05) inhibited by anti-IL-6 antibody; exogenous IL-6 induced significant (P < 0.05) AHR to EFS similar to that elicited by LPS. Conclusion: Targeting IL-6 with specific antibody may represent an effective strategy to treat equine asthma, especially in those animals suffering from severe forms of this disease.

Inflammatory and contractile profile in LPS-challenged equine isolated bronchi: Evidence for IL-6 as a potential target against AHR in equine asthma / Calzetta, Luigino; Pistocchini, Elena; Cito, Giuseppe; Ritondo, Beatrice Ludovica; Verri, Stefano; Rogliani, Paola. - In: PULMONARY PHARMACOLOGY & THERAPEUTICS. - ISSN 1522-9629. - 73-74:(2022), p. 102125. [10.1016/j.pupt.2022.102125]

Inflammatory and contractile profile in LPS-challenged equine isolated bronchi: Evidence for IL-6 as a potential target against AHR in equine asthma

Calzetta, Luigino;Verri, Stefano;Rogliani, Paola
2022-01-01

Abstract

Background: Airway inflammation and airway hyperresponsiveness (AHR) are pivotal characteristics of equine asthma. Lipopolysaccharide (LPS) may have a central role in modulating airway inflammation and dysfunction. Therefore, the aim of this study was to match the inflammatory and contractile profile in LPS-challenged equine isolated bronchi to identify molecular targets potentially suitable to counteract AHR in asthmatic horses. Methods: Equine isolated bronchi were incubated overnight with LPS (0.1-100 ng/ml). The contractile response to electrical field stimulation (EFS) and the levels of cytokines, chemokines, and neurokinin A (NKA) were quantified. The role of capsaicin sensitive-sensory nerves, neurokinin-2 (NK2) receptor, transient receptor potential vanilloid type 1 receptors (TRPV1), and epithelium were also investigated. Results: LPS 1 ng/ml elicited AHR to EFS (+238.17 ± 25.20% P < 0.001 vs. control). LPS significantly (P < 0.05 vs. control) increased the levels of IL-4 (+36.08 ± 1.62%), IL-5 (+38.60 ± 3.58%), IL-6 (+33.79 ± 2.59%), IL-13 (+40.91 ± 1.93%), IL-1β (+1650.16 ± 71.16%), IL-33 (+88.14 ± 8.93%), TGF-β (22.29 ± 1.03%), TNF-α (+56.13 ± 4.61%), CXCL-8 (+98.49 ± 17.70%), EOTAXIN (+32.26 ± 2.27%), MCP-1 (+49.63 ± 4.59%), RANTES (+36.38 ± 2.24%), and NKA (+112.81 ± 6.42%). Capsaicin sensitive-sensory nerves, NK2 receptor, and TRPV1 were generally involved in the LPS-mediated inflammation. Epithelium removal modulated the release of IL-1β, IL-33, and TGF-β. Only the levels of IL-6 fitted with AHR to a wide range of EFS frequencies, an effect significantly (P < 0.05) inhibited by anti-IL-6 antibody; exogenous IL-6 induced significant (P < 0.05) AHR to EFS similar to that elicited by LPS. Conclusion: Targeting IL-6 with specific antibody may represent an effective strategy to treat equine asthma, especially in those animals suffering from severe forms of this disease.
2022
Inflammatory and contractile profile in LPS-challenged equine isolated bronchi: Evidence for IL-6 as a potential target against AHR in equine asthma / Calzetta, Luigino; Pistocchini, Elena; Cito, Giuseppe; Ritondo, Beatrice Ludovica; Verri, Stefano; Rogliani, Paola. - In: PULMONARY PHARMACOLOGY & THERAPEUTICS. - ISSN 1522-9629. - 73-74:(2022), p. 102125. [10.1016/j.pupt.2022.102125]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2937245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 6
social impact