The molecular Pt nanocluster [Pt27(CO)31]4- (14-) was obtained by thermal decomposition of [Pt15(CO)30]2- in tetrahydrofuran under a H2 atmosphere. The reaction of 14- with increasing amounts of HBF4·Et2O afforded the previously reported [Pt26(CO)32]2- (32-) and [Pt26(CO)32]- (3-). The new nanocluster 14- was characterized by IR and UV-visible spectroscopy, single-crystal X-ray diffraction, direct-current superconducting quantum interference device magnetometry, cyclic voltammetry, IR spectroelectrochemistry (IR SEC), and electrochemical impedance spectroscopy. The cluster displays a cubic-close-packed Pt27 framework generated by the overlapping of four ABCA layers, composed of 3, 7, 11, and 6 atoms, respectively, that encapsulates a fully interstitial Pt4 tetrahedron. One Pt atom is missing within layer 3, and this defect (vacancy) generates local deformations within layers 2 and 3. These local deformations tend to repair the defect (missing atom) and increase the number of Pt-Pt bonding contacts, minimizing the total energy. The cluster 14- is perfectly diamagnetic and displays a rich electrochemical behavior. Indeed, six different oxidation states have been characterized by IR SEC, unraveling the series of 1n- (n = 3-8) isostructural nanoclusters. Computational studies have been carried out to further support the interpretation of the experimental data.
Atomically Precise Platinum Carbonyl Nanoclusters: Synthesis, Total Structure, and Electrochemical Investigation of [Pt27(CO)31]4-Displaying a Defective Structure / Cesari, C.; Berti, B.; Funaioli, T.; Femoni, C.; Iapalucci, M. C.; Pontiroli, D.; Magnani, G.; Ricco, M.; Bortoluzzi, M.; Vivaldi, F. M.; Zacchini, S.. - In: INORGANIC CHEMISTRY. - ISSN 1520-510X. - 61:32(2022), pp. 12534-12544. [10.1021/acs.inorgchem.2c00965]
Atomically Precise Platinum Carbonyl Nanoclusters: Synthesis, Total Structure, and Electrochemical Investigation of [Pt27(CO)31]4-Displaying a Defective Structure
Pontiroli D.;Magnani G.;Ricco M.;
2022-01-01
Abstract
The molecular Pt nanocluster [Pt27(CO)31]4- (14-) was obtained by thermal decomposition of [Pt15(CO)30]2- in tetrahydrofuran under a H2 atmosphere. The reaction of 14- with increasing amounts of HBF4·Et2O afforded the previously reported [Pt26(CO)32]2- (32-) and [Pt26(CO)32]- (3-). The new nanocluster 14- was characterized by IR and UV-visible spectroscopy, single-crystal X-ray diffraction, direct-current superconducting quantum interference device magnetometry, cyclic voltammetry, IR spectroelectrochemistry (IR SEC), and electrochemical impedance spectroscopy. The cluster displays a cubic-close-packed Pt27 framework generated by the overlapping of four ABCA layers, composed of 3, 7, 11, and 6 atoms, respectively, that encapsulates a fully interstitial Pt4 tetrahedron. One Pt atom is missing within layer 3, and this defect (vacancy) generates local deformations within layers 2 and 3. These local deformations tend to repair the defect (missing atom) and increase the number of Pt-Pt bonding contacts, minimizing the total energy. The cluster 14- is perfectly diamagnetic and displays a rich electrochemical behavior. Indeed, six different oxidation states have been characterized by IR SEC, unraveling the series of 1n- (n = 3-8) isostructural nanoclusters. Computational studies have been carried out to further support the interpretation of the experimental data.File | Dimensione | Formato | |
---|---|---|---|
cesari-et-al-2022-atomically-precise-platinum-carbonyl-nanoclusters-synthesis-total-structure-and-electrochemical.pdf
accesso aperto
Tipologia:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
6.11 MB
Formato
Adobe PDF
|
6.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.