Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
Global maps of soil temperature / Lembrechts, J. J.; van den Hoogen, J.; Aalto, J.; Ashcroft, M. B.; De Frenne, P.; Kemppinen, J.; Kopecky, M.; Luoto, M.; Maclean, I. M. D.; Crowther, T. W.; Bailey, J. J.; Haesen, S.; Klinges, D. H.; Niittynen, P.; Scheffers, B. R.; Van Meerbeek, K.; Aartsma, P.; Abdalaze, O.; Abedi, M.; Aerts, R.; Ahmadian, N.; Ahrends, A.; Alatalo, J. M.; Alexander, J. M.; Allonsius, C. N.; Altman, J.; Ammann, C.; Andres, C.; Andrews, C.; Ardo, J.; Arriga, N.; Arzac, A.; Aschero, V.; Assis, R. L.; Assmann, J. J.; Bader, M. Y.; Bahalkeh, K.; Barancok, P.; Barrio, I. C.; Barros, A.; Barthel, M.; Basham, E. W.; Bauters, M.; Bazzichetto, M.; Marchesini, L. B.; Bell, M. C.; Benavides, J. C.; Benito Alonso, J. L.; Berauer, B. J.; Bjerke, J. W.; Bjork, R. G.; Bjorkman, M. P.; Bjornsdottir, K.; Blonder, B.; Boeckx, P.; Boike, J.; Bokhorst, S.; Brum, B. N. S.; Bruna, J.; Buchmann, N.; Buysse, P.; Camargo, J. L.; Campoe, O. C.; Candan, O.; Canessa, R.; Cannone, N.; Carbognani, M.; Carnicer, J.; Casanova-Katny, A.; Cesarz, S.; Chojnicki, B.; Choler, P.; Chown, S. L.; Cifuentes, E. F.; Ciliak, M.; Contador, T.; Convey, P.; Cooper, E. J.; Cremonese, E.; Curasi, S. R.; Curtis, R.; Cutini, M.; Dahlberg, C. J.; Daskalova, G. N.; de Pablo, M. A.; Della Chiesa, S.; Dengler, J.; Deronde, B.; Descombes, P.; Di Cecco, V.; Di Musciano, M.; Dick, J.; Dimarco, R. D.; Dolezal, J.; Dorrepaal, E.; Dusek, J.; Eisenhauer, N.; Eklundh, L.; Erickson, T. E.; Erschbamer, B.; Eugster, W.; Ewers, R. M.; Exton, D. A.; Fanin, N.; Fazlioglu, F.; Feigenwinter, I.; Fenu, G.; Ferlian, O.; Fernandez Calzado, M. R.; Fernandez-Pascual, E.; Finckh, M.; Higgens, R. F.; Forte, T. G. W.; Freeman, E. C.; Frei, E. R.; Fuentes-Lillo, E.; Garcia, R. A.; Garcia, M. B.; Geron, C.; Gharun, M.; Ghosn, D.; Gigauri, K.; Gobin, A.; Goded, I.; Goeckede, M.; Gottschall, F.; Goulding, K.; Govaert, S.; Graae, B. J.; Greenwood, S.; Greiser, C.; Grelle, A.; Guenard, B.; Guglielmin, M.; Guillemot, J.; Haase, P.; Haider, S.; Halbritter, A. H.; Hamid, M.; Hammerle, A.; Hampe, A.; Haugum, S. V.; Hederova, L.; Heinesch, B.; Helfter, C.; Hepenstrick, D.; Herberich, M.; Herbst, M.; Hermanutz, L.; Hik, D. S.; Hoffren, R.; Homeier, J.; Hortnagl, L.; Hoye, T. T.; Hrbacek, F.; Hylander, K.; Iwata, H.; Jackowicz-Korczynski, M. A.; Jactel, H.; Jarveoja, J.; Jastrzebowski, S.; Jentsch, A.; Jimenez, J. J.; Jonsdottir, I. S.; Jucker, T.; Jump, A. S.; Juszczak, R.; Kanka, R.; Kaspar, V.; Kazakis, G.; Kelly, J.; Khuroo, A. A.; Klemedtsson, L.; Klisz, M.; Kljun, N.; Knohl, A.; Kobler, J.; Kollar, J.; Kotowska, M. M.; Kovacs, B.; Kreyling, J.; Lamprecht, A.; Lang, S. I.; Larson, C.; Larson, K.; Laska, K.; le Maire, G.; Leihy, R. I.; Lens, L.; Liljebladh, B.; Lohila, A.; Lorite, J.; Loubet, B.; Lynn, J.; Macek, M.; Mackenzie, R.; Magliulo, E.; Maier, R.; Malfasi, F.; Malis, F.; Man, M.; Manca, G.; Manco, A.; Manise, T.; Manolaki, P.; Marciniak, F.; Matula, R.; Mazzolari, A. C.; Medinets, S.; Medinets, V.; Meeussen, C.; Merinero, S.; Mesquita, R. D. C. G.; Meusburger, K.; Meysman, F. J. R.; Michaletz, S. T.; Milbau, A.; Moiseev, D.; Moiseev, P.; Mondoni, A.; Monfries, R.; Montagnani, L.; Moriana-Armendariz, M.; Morra di Cella, U.; Morsdorf, M.; Mosedale, J. R.; Muffler, L.; Munoz-Rojas, M.; Myers, J. A.; Myers-Smith, I. H.; Nagy, L.; Nardino, M.; Naujokaitis-Lewis, I.; Newling, E.; Nicklas, L.; Niedrist, G.; Niessner, A.; Nilsson, M. B.; Normand, S.; Nosetto, M. D.; Nouvellon, Y.; Nunez, M. A.; Ogaya, R.; Ogee, J.; Okello, J.; Olejnik, J.; Olesen, J. E.; Opedal, O. H.; Orsenigo, S.; Palaj, A.; Pampuch, T.; Panov, A. V.; Partel, M.; Pastor, A.; Pauchard, A.; Pauli, H.; Pavelka, M.; Pearse, W. D.; Peichl, M.; Pellissier, L.; Penczykowski, R. M.; Penuelas, J.; Petit Bon, M.; Petraglia, A.; Phartyal, S. S.; Phoenix, G. K.; Pio, C.; Pitacco, A.; Pitteloud, C.; Plichta, R.; Porro, F.; Portillo-Estrada, M.; Poulenard, J.; Poyatos, R.; Prokushkin, A. S.; Puchalka, R.; Puscas, M.; Radujkovic, D.; Randall, K.; Ratier Backes, A.; Remmele, S.; Remmers, W.; Renault, D.; Risch, A. C.; Rixen, C.; Robinson, S. A.; Robroek, B. J. M.; Rocha, A. V.; Rossi, C.; Rossi, G.; Roupsard, O.; Rubtsov, A. V.; Saccone, P.; Sagot, C.; Sallo Bravo, J.; Santos, C. C.; Sarneel, J. M.; Scharnweber, T.; Schmeddes, J.; Schmidt, M.; Scholten, T.; Schuchardt, M.; Schwartz, N.; Scott, T.; Seeber, J.; Segalin de Andrade, A. C.; Seipel, T.; Semenchuk, P.; Senior, R. A.; Serra-Diaz, J. M.; Sewerniak, P.; Shekhar, A.; Sidenko, N. V.; Siebicke, L.; Siegwart Collier, L.; Simpson, E.; Siqueira, D. P.; Sitkova, Z.; Six, J.; Smiljanic, M.; Smith, S. W.; Smith-Tripp, S.; Somers, B.; Sorensen, M. V.; Souza, J. J. L. L.; Souza, B. I.; Souza Dias, A.; Spasojevic, M. J.; Speed, J. D. M.; Spicher, F.; Stanisci, A.; Steinbauer, K.; Steinbrecher, R.; Steinwandter, M.; Stemkovski, M.; Stephan, J. G.; Stiegler, C.; Stoll, S.; Svatek, M.; Svoboda, M.; Tagesson, T.; Tanentzap, A. J.; Tanneberger, F.; Theurillat, J. -P.; Thomas, H. J. D.; Thomas, A. D.; Tielborger, K.; Tomaselli, M.; Treier, U. A.; Trouillier, M.; Turtureanu, P. D.; Tutton, R.; Tyystjarvi, V. A.; Ueyama, M.; Ujhazy, K.; Ujhazyova, M.; Uogintas, D.; Urban, A. V.; Urban, J.; Urbaniak, M.; Ursu, T. -M.; Vaccari, F. P.; Van de Vondel, S.; van den Brink, L.; Van Geel, M.; Vandvik, V.; Vangansbeke, P.; Varlagin, A.; Veen, G. F.; Veenendaal, E.; Venn, S. E.; Verbeeck, H.; Verbrugggen, E.; Verheijen, F. G. A.; Villar, L.; Vitale, L.; Vittoz, P.; Vives-Ingla, M.; von Oppen, J.; Walz, J.; Wang, R.; Wang, Y.; Way, R. G.; Wedegartner, R. E. M.; Weigel, R.; Wild, J.; Wilkinson, M.; Wilmking, M.; Wingate, L.; Winkler, M.; Wipf, S.; Wohlfahrt, G.; Xenakis, G.; Yang, Y.; Yu, Z.; Yu, K.; Zellweger, F.; Zhang, J.; Zhang, Z.; Zhao, P.; Ziemblinska, K.; Zimmermann, R.; Zong, S.; Zyryanov, V. I.; Nijs, I.; Lenoir, J.. - In: GLOBAL CHANGE BIOLOGY. - ISSN 1354-1013. - 28:9(2022), pp. 3110-3144. [10.1111/gcb.16060]
Global maps of soil temperature
Lembrechts J. J.;van den Hoogen J.;Aalto J.;Ashcroft M. B.;De Frenne P.;Kemppinen J.;Kopecky M.;Luoto M.;Maclean I. M. D.;Crowther T. W.;Bailey J. J.;Haesen S.;Klinges D. H.;Niittynen P.;Scheffers B. R.;Van Meerbeek K.;Aartsma P.;Abdalaze O.;Abedi M.;Aerts R.;Ahmadian N.;Ahrends A.;Alatalo J. M.;Alexander J. M.;Allonsius C. N.;Altman J.;Ammann C.;Andres C.;Andrews C.;Ardo J.;Arriga N.;Arzac A.;Aschero V.;Assis R. L.;Assmann J. J.;Bader M. Y.;Bahalkeh K.;Barancok P.;Barrio I. C.;Barros A.;Barthel M.;Basham E. W.;Bauters M.;Bazzichetto M.;Marchesini L. B.;Bell M. C.;Benavides J. C.;Benito Alonso J. L.;Berauer B. J.;Bjerke J. W.;Bjork R. G.;Bjorkman M. P.;Bjornsdottir K.;Blonder B.;Boeckx P.;Boike J.;Bokhorst S.;Brum B. N. S.;Bruna J.;Buchmann N.;Buysse P.;Camargo J. L.;Campoe O. C.;Candan O.;Canessa R.;Cannone N.;Carbognani M.;Carnicer J.;Casanova-Katny A.;Cesarz S.;Chojnicki B.;Choler P.;Chown S. L.;Cifuentes E. F.;Ciliak M.;Contador T.;Convey P.;Cooper E. J.;Cremonese E.;Curasi S. R.;Curtis R.;Cutini M.;Dahlberg C. J.;Daskalova G. N.;de Pablo M. A.;Della Chiesa S.;Dengler J.;Deronde B.;Descombes P.;Di Cecco V.;Di Musciano M.;Dick J.;Dimarco R. D.;Dolezal J.;Dorrepaal E.;Dusek J.;Eisenhauer N.;Eklundh L.;Erickson T. E.;Erschbamer B.;Eugster W.;Ewers R. M.;Exton D. A.;Fanin N.;Fazlioglu F.;Feigenwinter I.;Fenu G.;Ferlian O.;Fernandez Calzado M. R.;Fernandez-Pascual E.;Finckh M.;Higgens R. F.;Forte T. G. W.;Freeman E. C.;Frei E. R.;Fuentes-Lillo E.;Garcia R. A.;Garcia M. B.;Geron C.;Gharun M.;Ghosn D.;Gigauri K.;Gobin A.;Goded I.;Goeckede M.;Gottschall F.;Goulding K.;Govaert S.;Graae B. J.;Greenwood S.;Greiser C.;Grelle A.;Guenard B.;Guglielmin M.;Guillemot J.;Haase P.;Haider S.;Halbritter A. H.;Hamid M.;Hammerle A.;Hampe A.;Haugum S. V.;Hederova L.;Heinesch B.;Helfter C.;Hepenstrick D.;Herberich M.;Herbst M.;Hermanutz L.;Hik D. S.;Hoffren R.;Homeier J.;Hortnagl L.;Hoye T. T.;Hrbacek F.;Hylander K.;Iwata H.;Jackowicz-Korczynski M. A.;Jactel H.;Jarveoja J.;Jastrzebowski S.;Jentsch A.;Jimenez J. J.;Jonsdottir I. S.;Jucker T.;Jump A. S.;Juszczak R.;Kanka R.;Kaspar V.;Kazakis G.;Kelly J.;Khuroo A. A.;Klemedtsson L.;Klisz M.;Kljun N.;Knohl A.;Kobler J.;Kollar J.;Kotowska M. M.;Kovacs B.;Kreyling J.;Lamprecht A.;Lang S. I.;Larson C.;Larson K.;Laska K.;le Maire G.;Leihy R. I.;Lens L.;Liljebladh B.;Lohila A.;Lorite J.;Loubet B.;Lynn J.;Macek M.;Mackenzie R.;Magliulo E.;Maier R.;Malfasi F.;Malis F.;Man M.;Manca G.;Manco A.;Manise T.;Manolaki P.;Marciniak F.;Matula R.;Mazzolari A. C.;Medinets S.;Medinets V.;Meeussen C.;Merinero S.;Mesquita R. D. C. G.;Meusburger K.;Meysman F. J. R.;Michaletz S. T.;Milbau A.;Moiseev D.;Moiseev P.;Mondoni A.;Monfries R.;Montagnani L.;Moriana-Armendariz M.;Morra di Cella U.;Morsdorf M.;Mosedale J. R.;Muffler L.;Munoz-Rojas M.;Myers J. A.;Myers-Smith I. H.;Nagy L.;Nardino M.;Naujokaitis-Lewis I.;Newling E.;Nicklas L.;Niedrist G.;Niessner A.;Nilsson M. B.;Normand S.;Nosetto M. D.;Nouvellon Y.;Nunez M. A.;Ogaya R.;Ogee J.;Okello J.;Olejnik J.;Olesen J. E.;Opedal O. H.;Orsenigo S.;Palaj A.;Pampuch T.;Panov A. V.;Partel M.;Pastor A.;Pauchard A.;Pauli H.;Pavelka M.;Pearse W. D.;Peichl M.;Pellissier L.;Penczykowski R. M.;Penuelas J.;Petit Bon M.;Petraglia A.;Phartyal S. S.;Phoenix G. K.;Pio C.;Pitacco A.;Pitteloud C.;Plichta R.;Porro F.;Portillo-Estrada M.;Poulenard J.;Poyatos R.;Prokushkin A. S.;Puchalka R.;Puscas M.;Radujkovic D.;Randall K.;Ratier Backes A.;Remmele S.;Remmers W.;Renault D.;Risch A. C.;Rixen C.;Robinson S. A.;Robroek B. J. M.;Rocha A. V.;Rossi C.;Rossi G.;Roupsard O.;Rubtsov A. V.;Saccone P.;Sagot C.;Sallo Bravo J.;Santos C. C.;Sarneel J. M.;Scharnweber T.;Schmeddes J.;Schmidt M.;Scholten T.;Schuchardt M.;Schwartz N.;Scott T.;Seeber J.;Segalin de Andrade A. C.;Seipel T.;Semenchuk P.;Senior R. A.;Serra-Diaz J. M.;Sewerniak P.;Shekhar A.;Sidenko N. V.;Siebicke L.;Siegwart Collier L.;Simpson E.;Siqueira D. P.;Sitkova Z.;Six J.;Smiljanic M.;Smith S. W.;Smith-Tripp S.;Somers B.;Sorensen M. V.;Souza J. J. L. L.;Souza B. I.;Souza Dias A.;Spasojevic M. J.;Speed J. D. M.;Spicher F.;Stanisci A.;Steinbauer K.;Steinbrecher R.;Steinwandter M.;Stemkovski M.;Stephan J. G.;Stiegler C.;Stoll S.;Svatek M.;Svoboda M.;Tagesson T.;Tanentzap A. J.;Tanneberger F.;Theurillat J. -P.;Thomas H. J. D.;Thomas A. D.;Tielborger K.;Tomaselli M.;Treier U. A.;Trouillier M.;Turtureanu P. D.;Tutton R.;Tyystjarvi V. A.;Ueyama M.;Ujhazy K.;Ujhazyova M.;Uogintas D.;Urban A. V.;Urban J.;Urbaniak M.;Ursu T. -M.;Vaccari F. P.;Van de Vondel S.;van den Brink L.;Van Geel M.;Vandvik V.;Vangansbeke P.;Varlagin A.;Veen G. F.;Veenendaal E.;Venn S. E.;Verbeeck H.;Verbrugggen E.;Verheijen F. G. A.;Villar L.;Vitale L.;Vittoz P.;Vives-Ingla M.;von Oppen J.;Walz J.;Wang R.;Wang Y.;Way R. G.;Wedegartner R. E. M.;Weigel R.;Wild J.;Wilkinson M.;Wilmking M.;Wingate L.;Winkler M.;Wipf S.;Wohlfahrt G.;Xenakis G.;Yang Y.;Yu Z.;Yu K.;Zellweger F.;Zhang J.;Zhang Z.;Zhao P.;Ziemblinska K.;Zimmermann R.;Zong S.;Zyryanov V. I.;Nijs I.;Lenoir J.
2022-01-01
Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
Global maps of soil temperature / Lembrechts, J. J.; van den Hoogen, J.; Aalto, J.; Ashcroft, M. B.; De Frenne, P.; Kemppinen, J.; Kopecky, M.; Luoto, M.; Maclean, I. M. D.; Crowther, T. W.; Bailey, J. J.; Haesen, S.; Klinges, D. H.; Niittynen, P.; Scheffers, B. R.; Van Meerbeek, K.; Aartsma, P.; Abdalaze, O.; Abedi, M.; Aerts, R.; Ahmadian, N.; Ahrends, A.; Alatalo, J. M.; Alexander, J. M.; Allonsius, C. N.; Altman, J.; Ammann, C.; Andres, C.; Andrews, C.; Ardo, J.; Arriga, N.; Arzac, A.; Aschero, V.; Assis, R. L.; Assmann, J. J.; Bader, M. Y.; Bahalkeh, K.; Barancok, P.; Barrio, I. C.; Barros, A.; Barthel, M.; Basham, E. W.; Bauters, M.; Bazzichetto, M.; Marchesini, L. B.; Bell, M. C.; Benavides, J. C.; Benito Alonso, J. L.; Berauer, B. J.; Bjerke, J. W.; Bjork, R. G.; Bjorkman, M. P.; Bjornsdottir, K.; Blonder, B.; Boeckx, P.; Boike, J.; Bokhorst, S.; Brum, B. N. S.; Bruna, J.; Buchmann, N.; Buysse, P.; Camargo, J. L.; Campoe, O. C.; Candan, O.; Canessa, R.; Cannone, N.; Carbognani, M.; Carnicer, J.; Casanova-Katny, A.; Cesarz, S.; Chojnicki, B.; Choler, P.; Chown, S. L.; Cifuentes, E. F.; Ciliak, M.; Contador, T.; Convey, P.; Cooper, E. J.; Cremonese, E.; Curasi, S. R.; Curtis, R.; Cutini, M.; Dahlberg, C. J.; Daskalova, G. N.; de Pablo, M. A.; Della Chiesa, S.; Dengler, J.; Deronde, B.; Descombes, P.; Di Cecco, V.; Di Musciano, M.; Dick, J.; Dimarco, R. D.; Dolezal, J.; Dorrepaal, E.; Dusek, J.; Eisenhauer, N.; Eklundh, L.; Erickson, T. E.; Erschbamer, B.; Eugster, W.; Ewers, R. M.; Exton, D. A.; Fanin, N.; Fazlioglu, F.; Feigenwinter, I.; Fenu, G.; Ferlian, O.; Fernandez Calzado, M. R.; Fernandez-Pascual, E.; Finckh, M.; Higgens, R. F.; Forte, T. G. W.; Freeman, E. C.; Frei, E. R.; Fuentes-Lillo, E.; Garcia, R. A.; Garcia, M. B.; Geron, C.; Gharun, M.; Ghosn, D.; Gigauri, K.; Gobin, A.; Goded, I.; Goeckede, M.; Gottschall, F.; Goulding, K.; Govaert, S.; Graae, B. J.; Greenwood, S.; Greiser, C.; Grelle, A.; Guenard, B.; Guglielmin, M.; Guillemot, J.; Haase, P.; Haider, S.; Halbritter, A. H.; Hamid, M.; Hammerle, A.; Hampe, A.; Haugum, S. V.; Hederova, L.; Heinesch, B.; Helfter, C.; Hepenstrick, D.; Herberich, M.; Herbst, M.; Hermanutz, L.; Hik, D. S.; Hoffren, R.; Homeier, J.; Hortnagl, L.; Hoye, T. T.; Hrbacek, F.; Hylander, K.; Iwata, H.; Jackowicz-Korczynski, M. A.; Jactel, H.; Jarveoja, J.; Jastrzebowski, S.; Jentsch, A.; Jimenez, J. J.; Jonsdottir, I. S.; Jucker, T.; Jump, A. S.; Juszczak, R.; Kanka, R.; Kaspar, V.; Kazakis, G.; Kelly, J.; Khuroo, A. A.; Klemedtsson, L.; Klisz, M.; Kljun, N.; Knohl, A.; Kobler, J.; Kollar, J.; Kotowska, M. M.; Kovacs, B.; Kreyling, J.; Lamprecht, A.; Lang, S. I.; Larson, C.; Larson, K.; Laska, K.; le Maire, G.; Leihy, R. I.; Lens, L.; Liljebladh, B.; Lohila, A.; Lorite, J.; Loubet, B.; Lynn, J.; Macek, M.; Mackenzie, R.; Magliulo, E.; Maier, R.; Malfasi, F.; Malis, F.; Man, M.; Manca, G.; Manco, A.; Manise, T.; Manolaki, P.; Marciniak, F.; Matula, R.; Mazzolari, A. C.; Medinets, S.; Medinets, V.; Meeussen, C.; Merinero, S.; Mesquita, R. D. C. G.; Meusburger, K.; Meysman, F. J. R.; Michaletz, S. T.; Milbau, A.; Moiseev, D.; Moiseev, P.; Mondoni, A.; Monfries, R.; Montagnani, L.; Moriana-Armendariz, M.; Morra di Cella, U.; Morsdorf, M.; Mosedale, J. R.; Muffler, L.; Munoz-Rojas, M.; Myers, J. A.; Myers-Smith, I. H.; Nagy, L.; Nardino, M.; Naujokaitis-Lewis, I.; Newling, E.; Nicklas, L.; Niedrist, G.; Niessner, A.; Nilsson, M. B.; Normand, S.; Nosetto, M. D.; Nouvellon, Y.; Nunez, M. A.; Ogaya, R.; Ogee, J.; Okello, J.; Olejnik, J.; Olesen, J. E.; Opedal, O. H.; Orsenigo, S.; Palaj, A.; Pampuch, T.; Panov, A. V.; Partel, M.; Pastor, A.; Pauchard, A.; Pauli, H.; Pavelka, M.; Pearse, W. D.; Peichl, M.; Pellissier, L.; Penczykowski, R. M.; Penuelas, J.; Petit Bon, M.; Petraglia, A.; Phartyal, S. S.; Phoenix, G. K.; Pio, C.; Pitacco, A.; Pitteloud, C.; Plichta, R.; Porro, F.; Portillo-Estrada, M.; Poulenard, J.; Poyatos, R.; Prokushkin, A. S.; Puchalka, R.; Puscas, M.; Radujkovic, D.; Randall, K.; Ratier Backes, A.; Remmele, S.; Remmers, W.; Renault, D.; Risch, A. C.; Rixen, C.; Robinson, S. A.; Robroek, B. J. M.; Rocha, A. V.; Rossi, C.; Rossi, G.; Roupsard, O.; Rubtsov, A. V.; Saccone, P.; Sagot, C.; Sallo Bravo, J.; Santos, C. C.; Sarneel, J. M.; Scharnweber, T.; Schmeddes, J.; Schmidt, M.; Scholten, T.; Schuchardt, M.; Schwartz, N.; Scott, T.; Seeber, J.; Segalin de Andrade, A. C.; Seipel, T.; Semenchuk, P.; Senior, R. A.; Serra-Diaz, J. M.; Sewerniak, P.; Shekhar, A.; Sidenko, N. V.; Siebicke, L.; Siegwart Collier, L.; Simpson, E.; Siqueira, D. P.; Sitkova, Z.; Six, J.; Smiljanic, M.; Smith, S. W.; Smith-Tripp, S.; Somers, B.; Sorensen, M. V.; Souza, J. J. L. L.; Souza, B. I.; Souza Dias, A.; Spasojevic, M. J.; Speed, J. D. M.; Spicher, F.; Stanisci, A.; Steinbauer, K.; Steinbrecher, R.; Steinwandter, M.; Stemkovski, M.; Stephan, J. G.; Stiegler, C.; Stoll, S.; Svatek, M.; Svoboda, M.; Tagesson, T.; Tanentzap, A. J.; Tanneberger, F.; Theurillat, J. -P.; Thomas, H. J. D.; Thomas, A. D.; Tielborger, K.; Tomaselli, M.; Treier, U. A.; Trouillier, M.; Turtureanu, P. D.; Tutton, R.; Tyystjarvi, V. A.; Ueyama, M.; Ujhazy, K.; Ujhazyova, M.; Uogintas, D.; Urban, A. V.; Urban, J.; Urbaniak, M.; Ursu, T. -M.; Vaccari, F. P.; Van de Vondel, S.; van den Brink, L.; Van Geel, M.; Vandvik, V.; Vangansbeke, P.; Varlagin, A.; Veen, G. F.; Veenendaal, E.; Venn, S. E.; Verbeeck, H.; Verbrugggen, E.; Verheijen, F. G. A.; Villar, L.; Vitale, L.; Vittoz, P.; Vives-Ingla, M.; von Oppen, J.; Walz, J.; Wang, R.; Wang, Y.; Way, R. G.; Wedegartner, R. E. M.; Weigel, R.; Wild, J.; Wilkinson, M.; Wilmking, M.; Wingate, L.; Winkler, M.; Wipf, S.; Wohlfahrt, G.; Xenakis, G.; Yang, Y.; Yu, Z.; Yu, K.; Zellweger, F.; Zhang, J.; Zhang, Z.; Zhao, P.; Ziemblinska, K.; Zimmermann, R.; Zong, S.; Zyryanov, V. I.; Nijs, I.; Lenoir, J.. - In: GLOBAL CHANGE BIOLOGY. - ISSN 1354-1013. - 28:9(2022), pp. 3110-3144. [10.1111/gcb.16060]
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2931752
Citazioni
ND
162
157
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.