We confirm Jones' Conjecture for subcubic graphs. Namely, if a subcubic planar graph does not contain k + 1 vertex-disjoint cycles, then it suffices to delete 2k vertices to obtain a forest.

Jones’ conjecture in subcubic graphs / Bonamy, M.; Dross, F.; Masarik, T.; Munaro, A.; Nadara, W.; Pilipczuk, M.; Pilipczuk, M.. - 28:4(2021). [10.37236/9192]

Jones’ conjecture in subcubic graphs

Munaro A.;
2021

Abstract

We confirm Jones' Conjecture for subcubic graphs. Namely, if a subcubic planar graph does not contain k + 1 vertex-disjoint cycles, then it suffices to delete 2k vertices to obtain a forest.
Jones’ conjecture in subcubic graphs / Bonamy, M.; Dross, F.; Masarik, T.; Munaro, A.; Nadara, W.; Pilipczuk, M.; Pilipczuk, M.. - 28:4(2021). [10.37236/9192]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2929247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact