When exposed to cyclic quasi-static loading, elastic bodies in contact may develop a favourable condition where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. If the amplitude of the cyclic load is greater than a so-called shakedown limit, shakedown cannot occur. In this review paper, the validity of shakedown theorems in the context of conforming contacts with à la Coulomb friction is first discussed. Then, an optimisation method for determining the shakedown limit of elastic discrete three-dimensional systems is reviewed. Finally, an incremental Gauss–Seidel algorithm, extended to three-dimensional systems, is here illustrated in details for the first time. The algorithm allows us to describe the transient response of normal-tangential coupled systems under a given cyclic loading scenario, and to determine their possible shakedown depending on the initial conditions. An example concerning a discrete conforming contact problem, where either coupling or uncoupling conditions can be imposed, is illustrated.

Shakedown in frictional contact of discrete elastic systems: A review / Ahn, Y. J.; Klarbring, A.; Spagnoli, A.; Terzano, M.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - 241:(2022), p. 111470.111470. [10.1016/j.ijsolstr.2022.111470]

Shakedown in frictional contact of discrete elastic systems: A review

Spagnoli A.;Terzano M.
2022-01-01

Abstract

When exposed to cyclic quasi-static loading, elastic bodies in contact may develop a favourable condition where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. If the amplitude of the cyclic load is greater than a so-called shakedown limit, shakedown cannot occur. In this review paper, the validity of shakedown theorems in the context of conforming contacts with à la Coulomb friction is first discussed. Then, an optimisation method for determining the shakedown limit of elastic discrete three-dimensional systems is reviewed. Finally, an incremental Gauss–Seidel algorithm, extended to three-dimensional systems, is here illustrated in details for the first time. The algorithm allows us to describe the transient response of normal-tangential coupled systems under a given cyclic loading scenario, and to determine their possible shakedown depending on the initial conditions. An example concerning a discrete conforming contact problem, where either coupling or uncoupling conditions can be imposed, is illustrated.
2022
Shakedown in frictional contact of discrete elastic systems: A review / Ahn, Y. J.; Klarbring, A.; Spagnoli, A.; Terzano, M.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - 241:(2022), p. 111470.111470. [10.1016/j.ijsolstr.2022.111470]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2922212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact