Protein kinase CK2, a pleiotropic and constitutively active kinase, is strictly involved in different diseases, especially in cancer. Many efforts have been carried out to develop specific CK2 inhibitors and recently, it has been evidenced that ferulic acid (FA) represents a promising, albeit cell impermeable, CK2 inhibitor. In the present study, the potential of a nanotechnological approach to cope with intracellular CK2 regulation was explored. Surface-Active Maghemite Nanoparticles (SAMNs), coupling magnetism with photoluminescence, a new feature of SAMNs here described for the first time, were chosen as dual imaging nanocarrier for FA. The self-assembled nanodevice (SAMN@FA) displayed a significant CK2 inhibitory activity in vitro. Moreover, effective cellular internalization of SAMN@FA in cancer cells was proved by direct visualization of the photoluminescent nanocarrier by confocal microscopy and was corroborated by phosphorylation levels of endogenous CK2 targets. The proposed trimodal nanodevice, representing the first example of cellular CK2 nano-inhibition, paves the way for novel active nanocarriers as appealing theranostic tool for future biomedical applications.

Intracellular protein kinase CK2 inhibition by ferulic acid-based trimodal nanodevice / Zanin, S.; Molinari, S.; Cozza, G.; Magro, M.; Fedele, G.; Vianello, F.; Venerando, A.. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - 165:Pt A(2020), pp. 701-712. [10.1016/j.ijbiomac.2020.09.207]

Intracellular protein kinase CK2 inhibition by ferulic acid-based trimodal nanodevice

Venerando A.
2020-01-01

Abstract

Protein kinase CK2, a pleiotropic and constitutively active kinase, is strictly involved in different diseases, especially in cancer. Many efforts have been carried out to develop specific CK2 inhibitors and recently, it has been evidenced that ferulic acid (FA) represents a promising, albeit cell impermeable, CK2 inhibitor. In the present study, the potential of a nanotechnological approach to cope with intracellular CK2 regulation was explored. Surface-Active Maghemite Nanoparticles (SAMNs), coupling magnetism with photoluminescence, a new feature of SAMNs here described for the first time, were chosen as dual imaging nanocarrier for FA. The self-assembled nanodevice (SAMN@FA) displayed a significant CK2 inhibitory activity in vitro. Moreover, effective cellular internalization of SAMN@FA in cancer cells was proved by direct visualization of the photoluminescent nanocarrier by confocal microscopy and was corroborated by phosphorylation levels of endogenous CK2 targets. The proposed trimodal nanodevice, representing the first example of cellular CK2 nano-inhibition, paves the way for novel active nanocarriers as appealing theranostic tool for future biomedical applications.
2020
Intracellular protein kinase CK2 inhibition by ferulic acid-based trimodal nanodevice / Zanin, S.; Molinari, S.; Cozza, G.; Magro, M.; Fedele, G.; Vianello, F.; Venerando, A.. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - 165:Pt A(2020), pp. 701-712. [10.1016/j.ijbiomac.2020.09.207]
File in questo prodotto:
File Dimensione Formato  
1_2020_IntJBiolMol.pdf

non disponibili

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2915990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact