Periodontal regeneration is a complex goal, which is commonly pursued with a combination of surgical techniques, biomaterials, and bioactive compounds. One such compound is enamel matrix derivative (EMD), a medical substance that is extracted from porcine tooth germs and which contains several protein fractions with BMP-and TGF-β-like action. Activation of TGF-β signaling is required for EMD activity on cells and tissues, and a growing body of evidence indicates that EMD largely relies on this pathway. As low frequency electromagnetic fields (EMFs) have long been investigated as a tool to promote bone formation and osteoblast activity, and because recent studies have reported that the effects of EMFs on cells require primary cilia, by modulating the presence of membrane-bound receptors (e.g., for BMP) or signal mediators, it can be hypothesized that the application of EMFs may increase cell sensitivity to EMD: as TGFBR receptors have also been identified on primary cilia, EMFs could make cells more responsive to EMD by inducing the display of a higher number of receptors on the cellular membrane.
Low frequency electromagnetic fields might increase the effect of enamel matrix derivative on periodontal tissues / Guizzardi, S.; Pedrazzi, G.; Galli, C.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 11:22(2021), p. 10758.10758. [10.3390/app112210758]
Low frequency electromagnetic fields might increase the effect of enamel matrix derivative on periodontal tissues
Guizzardi S.;Pedrazzi G.;Galli C.
2021-01-01
Abstract
Periodontal regeneration is a complex goal, which is commonly pursued with a combination of surgical techniques, biomaterials, and bioactive compounds. One such compound is enamel matrix derivative (EMD), a medical substance that is extracted from porcine tooth germs and which contains several protein fractions with BMP-and TGF-β-like action. Activation of TGF-β signaling is required for EMD activity on cells and tissues, and a growing body of evidence indicates that EMD largely relies on this pathway. As low frequency electromagnetic fields (EMFs) have long been investigated as a tool to promote bone formation and osteoblast activity, and because recent studies have reported that the effects of EMFs on cells require primary cilia, by modulating the presence of membrane-bound receptors (e.g., for BMP) or signal mediators, it can be hypothesized that the application of EMFs may increase cell sensitivity to EMD: as TGFBR receptors have also been identified on primary cilia, EMFs could make cells more responsive to EMD by inducing the display of a higher number of receptors on the cellular membrane.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.