In recent years, Bovine herpesvirus 4 (BoHV-4) has emerged as an attractive gene delivery viral vector, mainly for vaccination purposes in the veterinary field. In the present study, a new infectious clone of the BoHV-4 genome carrying a bacterial artificial chromosome vector (BoHV-4-BAC) was developed by homologous recombination in mammalian cell culture and bacterial systems, and exploited to express a truncated form of glycoprotein D (tgD) of Bovine herpesvirus 1 (BoHV-1) (BoHV-4-tgD∆TK) as a vaccine candidate. This construct’s immunogenicity was compared to a DNA vector expressing the same antigen (pC-tgD) in a BALB/c mouse model. After the mice were immunized, total and specific antibody responses, cytokine responses, total splenocyte cells proliferation/cytotoxicity, and virus neutralization assays were conducted to analyze the immune response elicited by both constructs. Mice from both vaccine groups developed significant humoral and cellular immune responses after a booster dose regime was conducted on day 28 post-injection. In almost all immunological assays, BoHV-4-tgDΔTK induced as high an immune response as pC-tgD. In both vaccine constructs, neutralizing antibodies were a significant determining factor in protection against BoHV-1, even after the first injection. We conclude that a BoHV-4-based viral vector offers an effective immunization strategy as an alternative to DNA-based immunization platforms, at least to combat BoHV-1.

Development of a BoHV-4 viral vector expressing tgD of BoHV-1 and evaluation of its immunogenicity in mouse model / Bilge-Dagalp, S.; Farzani, T. A.; Dogan, F.; Akkutay Yoldar, Z.; Ozkul, A.; Alkan, F.; Donofrio, G.. - In: BRAZILIAN JOURNAL OF MICROBIOLOGY. - ISSN 1517-8382. - 52:3(2021), pp. 1119-1133. [10.1007/s42770-021-00525-z]

Development of a BoHV-4 viral vector expressing tgD of BoHV-1 and evaluation of its immunogenicity in mouse model

Donofrio G.
2021-01-01

Abstract

In recent years, Bovine herpesvirus 4 (BoHV-4) has emerged as an attractive gene delivery viral vector, mainly for vaccination purposes in the veterinary field. In the present study, a new infectious clone of the BoHV-4 genome carrying a bacterial artificial chromosome vector (BoHV-4-BAC) was developed by homologous recombination in mammalian cell culture and bacterial systems, and exploited to express a truncated form of glycoprotein D (tgD) of Bovine herpesvirus 1 (BoHV-1) (BoHV-4-tgD∆TK) as a vaccine candidate. This construct’s immunogenicity was compared to a DNA vector expressing the same antigen (pC-tgD) in a BALB/c mouse model. After the mice were immunized, total and specific antibody responses, cytokine responses, total splenocyte cells proliferation/cytotoxicity, and virus neutralization assays were conducted to analyze the immune response elicited by both constructs. Mice from both vaccine groups developed significant humoral and cellular immune responses after a booster dose regime was conducted on day 28 post-injection. In almost all immunological assays, BoHV-4-tgDΔTK induced as high an immune response as pC-tgD. In both vaccine constructs, neutralizing antibodies were a significant determining factor in protection against BoHV-1, even after the first injection. We conclude that a BoHV-4-based viral vector offers an effective immunization strategy as an alternative to DNA-based immunization platforms, at least to combat BoHV-1.
2021
Development of a BoHV-4 viral vector expressing tgD of BoHV-1 and evaluation of its immunogenicity in mouse model / Bilge-Dagalp, S.; Farzani, T. A.; Dogan, F.; Akkutay Yoldar, Z.; Ozkul, A.; Alkan, F.; Donofrio, G.. - In: BRAZILIAN JOURNAL OF MICROBIOLOGY. - ISSN 1517-8382. - 52:3(2021), pp. 1119-1133. [10.1007/s42770-021-00525-z]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2908080
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact