The design for assembly and installation of aircraft systems is a challenging topic to tackle in the conceptual design phase. This paper presents the definition of a Conceptual Design for Assembly (CDfA) methodology for cabin architecture concept of a commercial aircraft. The cabin equipping includes the assembly of many interior components (here called modules) such as toilets, galleys, seats, etc. The method has been developed and experimented on a civil aircraft cabin installation. Results provide interesting insight in the identification of the most complex items to install, enabling to understand, in terms of design, were criticalities lie and where improvements can be implemented. Results highlight how the new cabin architecture design performs better (approximately 23%) than the previous one in terms of assembly, which has been confirmed by the workload measurement performed on the assembly line.
A Method to Assess Design for Assembly Efficiency of Aircraft Cabin Concepts / Formentini, G.; Favi, C.; Bouissiere, F.; Cuiller, C.; Dereux, P. -E.; Jurbert, C.. - ELETTRONICO. - (2022), pp. 287-297. (Intervento presentato al convegno 2nd International Conference on Design Tools and Methods in Industrial Engineering, ADM 2021 tenutosi a ita nel 2021) [10.1007/978-3-030-91234-5_29].
A Method to Assess Design for Assembly Efficiency of Aircraft Cabin Concepts
Formentini G.
;Favi C.;
2022-01-01
Abstract
The design for assembly and installation of aircraft systems is a challenging topic to tackle in the conceptual design phase. This paper presents the definition of a Conceptual Design for Assembly (CDfA) methodology for cabin architecture concept of a commercial aircraft. The cabin equipping includes the assembly of many interior components (here called modules) such as toilets, galleys, seats, etc. The method has been developed and experimented on a civil aircraft cabin installation. Results provide interesting insight in the identification of the most complex items to install, enabling to understand, in terms of design, were criticalities lie and where improvements can be implemented. Results highlight how the new cabin architecture design performs better (approximately 23%) than the previous one in terms of assembly, which has been confirmed by the workload measurement performed on the assembly line.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.