We construct automorphisms of ℂ2, and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form F(z,w)=(g(z,w),z) with g(z,w): ℂ2 → ℂ holomorphic.

Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ℂ2 / Benini, A.; Saracco, A.; Zedda, M.. - In: ERGODIC THEORY & DYNAMICAL SYSTEMS. - ISSN 0143-3857. - (2021), pp. 1-16. [10.1017/etds.2021.125]

Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ℂ2

Benini A.;Saracco A.;Zedda M.
2021-01-01

Abstract

We construct automorphisms of ℂ2, and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form F(z,w)=(g(z,w),z) with g(z,w): ℂ2 → ℂ holomorphic.
2021
Invariant escaping Fatou components with two rank-one limit functions for automorphisms of ℂ2 / Benini, A.; Saracco, A.; Zedda, M.. - In: ERGODIC THEORY & DYNAMICAL SYSTEMS. - ISSN 0143-3857. - (2021), pp. 1-16. [10.1017/etds.2021.125]
File in questo prodotto:
File Dimensione Formato  
Rank1LimitFunctions9.pdf

Open Access dal 01/07/2022

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 304.4 kB
Formato Adobe PDF
304.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2907948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact