Livestock farming is, in most cases in Europe, unsupervised, thus making it difficult to ensure adequate control of the position of the animals for the improvement of animal welfare. In addition, the geographical areas involved in livestock grazing usually have difficult access with harsh orography and lack of communications infrastructure, thus the need to provide a low-power livestock localization and monitoring system is of paramount importance, which is crucial not for a sustainable agriculture, but also for the protection of native breeds and meats thanks to their controlled supervision. In this context, this work presents an Internet of things (IoT)-based system integrating low-power wide area (LPWA) technology, cloud and virtualization services to provide real-time livestock location monitoring. Taking into account the constraints coming from the environment in terms of energy supply and network connectivity, our proposed system is based on a wearable device equipped with inertial sensors, Global Positioning System (GPS) receiver and LoRaWAN transceiver, which can provide a satisfactory compromise between performance, cost and energy consumption. At first, this article provides the state-of-the-art localization techniques and technologies applied to smart livestock. Then, we proceed to provide the hardware and firmware co-design to achieve very low energy consumption, thus providing a significant positive impact to the battery life. The proposed platform has been evaluated in a pilot test in the Northern part of Italy, evaluating different configurations in terms of sampling period, experimental duration and number of devices. The results are analyzed and discussed for packe delivery ratio, energy consumption, localization accuracy, battery discharge measurement and delay.
Practical Experiences of a Smart Livestock Location Monitoring System leveraging GNSS, LoRaWAN and Cloud Services / O Ojo, Mike; Viola, Irene; Baratta, Mario; Giordano, Stefano. - In: SENSORS. - ISSN 1424-8220. - 22:273(2022), pp. 1-26. [10.3390/s22010273]
Practical Experiences of a Smart Livestock Location Monitoring System leveraging GNSS, LoRaWAN and Cloud Services.
Mario Baratta
Conceptualization
;
2022-01-01
Abstract
Livestock farming is, in most cases in Europe, unsupervised, thus making it difficult to ensure adequate control of the position of the animals for the improvement of animal welfare. In addition, the geographical areas involved in livestock grazing usually have difficult access with harsh orography and lack of communications infrastructure, thus the need to provide a low-power livestock localization and monitoring system is of paramount importance, which is crucial not for a sustainable agriculture, but also for the protection of native breeds and meats thanks to their controlled supervision. In this context, this work presents an Internet of things (IoT)-based system integrating low-power wide area (LPWA) technology, cloud and virtualization services to provide real-time livestock location monitoring. Taking into account the constraints coming from the environment in terms of energy supply and network connectivity, our proposed system is based on a wearable device equipped with inertial sensors, Global Positioning System (GPS) receiver and LoRaWAN transceiver, which can provide a satisfactory compromise between performance, cost and energy consumption. At first, this article provides the state-of-the-art localization techniques and technologies applied to smart livestock. Then, we proceed to provide the hardware and firmware co-design to achieve very low energy consumption, thus providing a significant positive impact to the battery life. The proposed platform has been evaluated in a pilot test in the Northern part of Italy, evaluating different configurations in terms of sampling period, experimental duration and number of devices. The results are analyzed and discussed for packe delivery ratio, energy consumption, localization accuracy, battery discharge measurement and delay.File | Dimensione | Formato | |
---|---|---|---|
sensors-22-00273.pdf
accesso aperto
Tipologia:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
3.53 MB
Formato
Adobe PDF
|
3.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.