We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra u extends holomorphically to an action of the complexified group U^C and that the U-action on Z is Hamiltonian. If G⊂U^C is compatible, there exists a gradient map μ:X⟶p where g=k⊕p is a Cartan decomposition of g . In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map μp

COMPACT ORBITS OF PARABOLIC SUBGROUPS / Biliotti, Leonardo; Windare, OLUWAGBENGA JOSHUA. - In: NAGOYA MATHEMATICAL JOURNAL. - ISSN 0027-7630. - 247:(2022), pp. 615-623. [10.1017/nmj.2021.14]

COMPACT ORBITS OF PARABOLIC SUBGROUPS

BILIOTTI, LEONARDO;WINDARE, OLUWAGBENGA JOSHUA
2022-01-01

Abstract

We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra u extends holomorphically to an action of the complexified group U^C and that the U-action on Z is Hamiltonian. If G⊂U^C is compatible, there exists a gradient map μ:X⟶p where g=k⊕p is a Cartan decomposition of g . In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map μp
2022
COMPACT ORBITS OF PARABOLIC SUBGROUPS / Biliotti, Leonardo; Windare, OLUWAGBENGA JOSHUA. - In: NAGOYA MATHEMATICAL JOURNAL. - ISSN 0027-7630. - 247:(2022), pp. 615-623. [10.1017/nmj.2021.14]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2906514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact