We prove that manifold constrained p(x)-harmonic maps are locally C1,β0-regular outside a set of zero n-dimensional Lebesgue’s measure, for some β∈ (0 , 1). We also provide an estimate from above of the Hausdorff dimension of the singular set.

Partial regularity for manifold constrained p(x)-harmonic maps / De Filippis, C.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 58:2(2019), pp. 1-38. [10.1007/s00526-019-1483-6]

Partial regularity for manifold constrained p(x)-harmonic maps

De Filippis C.
2019-01-01

Abstract

We prove that manifold constrained p(x)-harmonic maps are locally C1,β0-regular outside a set of zero n-dimensional Lebesgue’s measure, for some β∈ (0 , 1). We also provide an estimate from above of the Hausdorff dimension of the singular set.
Partial regularity for manifold constrained p(x)-harmonic maps / De Filippis, C.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 58:2(2019), pp. 1-38. [10.1007/s00526-019-1483-6]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2902748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact