We analyze fine properties of solutions to quasilinear elliptic equations with double-phase structure and characterize, in the terms of intrinsic Hausdorff measures, the size of the removable sets for Hölder continuous solutions.

Removable sets in non-uniformly elliptic problems / Chlebicka, I.; De Filippis, C.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 199:2(2020), pp. 619-649. [10.1007/s10231-019-00894-1]

Removable sets in non-uniformly elliptic problems

De Filippis C.
2020

Abstract

We analyze fine properties of solutions to quasilinear elliptic equations with double-phase structure and characterize, in the terms of intrinsic Hausdorff measures, the size of the removable sets for Hölder continuous solutions.
Removable sets in non-uniformly elliptic problems / Chlebicka, I.; De Filippis, C.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 199:2(2020), pp. 619-649. [10.1007/s10231-019-00894-1]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2902688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact