Liquid crystalline elastomers (LCEs) exhibit some remarkable physical properties, such as the reversible large mechanical deformation induced by proper environmental stimuli of different nature, such as the thermal stimulus, allowing their use as soft actuators. The unique features displayed by LCE are originated from their anisotropic microstructure characterized by the preferential orientation of the mesogen molecules embedded in the polymer network. An open issue in the design of LCEs is how to control their actuation effectiveness: the amount of mesogens molecules, how they are linked to the network, the order degree, the cross-link density are some controllable parameters whose spatial distribution, however, in general cannot be tuned except the last one. In this paper, we develop a theoretical micromechanical-based framework to model and explore the effect of the network cross-link density on the mechanical actuation of elements made of liquid crystalline elastomer. In this context, the light-induced polymerization (photopolymerization) for obtaining the elastomers’ cross-linked network is of particular interest, being suitable for precisely tuning the cross-link density distribution within the material; this technology enables to obtain a molecular-scale architected LCEs, allowing the optimal design of the obtainable actuation. The possibility to properly set the cross-link density arrangement within the smart structural element (LCE microstructure design and optimization), represents an intriguing way to create molecular-scale engineered LCE elements having material microstructure encoded desired actuation capabilities.

Smart actuation of liquid crystal elastomer elements: cross-link density-controlled response / Brighenti, Roberto; Cosma, Mattia Pancrazio. - In: SMART MATERIALS AND STRUCTURES. - ISSN 0964-1726. - 31:1(2022). [10.1088/1361-665X/ac34bf]

Smart actuation of liquid crystal elastomer elements: cross-link density-controlled response

Roberto Brighenti;Mattia Pancrazio Cosma
2022

Abstract

Liquid crystalline elastomers (LCEs) exhibit some remarkable physical properties, such as the reversible large mechanical deformation induced by proper environmental stimuli of different nature, such as the thermal stimulus, allowing their use as soft actuators. The unique features displayed by LCE are originated from their anisotropic microstructure characterized by the preferential orientation of the mesogen molecules embedded in the polymer network. An open issue in the design of LCEs is how to control their actuation effectiveness: the amount of mesogens molecules, how they are linked to the network, the order degree, the cross-link density are some controllable parameters whose spatial distribution, however, in general cannot be tuned except the last one. In this paper, we develop a theoretical micromechanical-based framework to model and explore the effect of the network cross-link density on the mechanical actuation of elements made of liquid crystalline elastomer. In this context, the light-induced polymerization (photopolymerization) for obtaining the elastomers’ cross-linked network is of particular interest, being suitable for precisely tuning the cross-link density distribution within the material; this technology enables to obtain a molecular-scale architected LCEs, allowing the optimal design of the obtainable actuation. The possibility to properly set the cross-link density arrangement within the smart structural element (LCE microstructure design and optimization), represents an intriguing way to create molecular-scale engineered LCE elements having material microstructure encoded desired actuation capabilities.
Smart actuation of liquid crystal elastomer elements: cross-link density-controlled response / Brighenti, Roberto; Cosma, Mattia Pancrazio. - In: SMART MATERIALS AND STRUCTURES. - ISSN 0964-1726. - 31:1(2022). [10.1088/1361-665X/ac34bf]
File in questo prodotto:
File Dimensione Formato  
123J_231_Pre print document_SMS.pdf

embargo fino al 01/12/2021

Descrizione: documento in post print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2901978
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact