Background: Pan-genome approaches afford the discovery of homology relations in a set of genomes, by determining how some gene families are distributed among a given set of genomes. The retrieval of a complete gene distribution among a class of genomes is an NP-hard problem because computational costs increase with the number of analyzed genomes, in fact, all-against-all gene comparisons are required to completely solve the problem. In presence of phylogenetically distant genomes, due to the variability introduced in gene duplication and transmission, the task of recognizing homologous genes becomes even more difficult. A challenge on this field is that of designing fast and adaptive similarity measures in order to find a suitable pan-genome structure of homology relations. Results: We present PanDelos, a stand alone tool for the discovery of pan-genome contents among phylogenetic distant genomes. The methodology is based on information theory and network analysis. It is parameter-free because thresholds are automatically deduced from the context. PanDelos avoids sequence alignment by introducing a measure based on k-mer multiplicity. The k-mer length is defined according to general arguments rather than empirical considerations. Homology candidate relations are integrated into a global network and groups of homologous genes are extracted by applying a community detection algorithm. Conclusions: PanDelos outperforms existing approaches, Roary and EDGAR, in terms of running times and quality content discovery. Tests were run on collections of real genomes, previously used in analogous studies, and in synthetic benchmarks that represent fully trusted golden truth. The software is available at https://github.com/GiugnoLab/PanDelos. © 2018 The Author(s).

PanDelos: a dictionary-based method forpan-genome content discovery / Bonnici, V; Giugno, R; Manca, V. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 19:15(2018), pp. 48-59. [10.1186/s12859-018-2417-6]

PanDelos: a dictionary-based method forpan-genome content discovery

V Bonnici;
2018-01-01

Abstract

Background: Pan-genome approaches afford the discovery of homology relations in a set of genomes, by determining how some gene families are distributed among a given set of genomes. The retrieval of a complete gene distribution among a class of genomes is an NP-hard problem because computational costs increase with the number of analyzed genomes, in fact, all-against-all gene comparisons are required to completely solve the problem. In presence of phylogenetically distant genomes, due to the variability introduced in gene duplication and transmission, the task of recognizing homologous genes becomes even more difficult. A challenge on this field is that of designing fast and adaptive similarity measures in order to find a suitable pan-genome structure of homology relations. Results: We present PanDelos, a stand alone tool for the discovery of pan-genome contents among phylogenetic distant genomes. The methodology is based on information theory and network analysis. It is parameter-free because thresholds are automatically deduced from the context. PanDelos avoids sequence alignment by introducing a measure based on k-mer multiplicity. The k-mer length is defined according to general arguments rather than empirical considerations. Homology candidate relations are integrated into a global network and groups of homologous genes are extracted by applying a community detection algorithm. Conclusions: PanDelos outperforms existing approaches, Roary and EDGAR, in terms of running times and quality content discovery. Tests were run on collections of real genomes, previously used in analogous studies, and in synthetic benchmarks that represent fully trusted golden truth. The software is available at https://github.com/GiugnoLab/PanDelos. © 2018 The Author(s).
2018
PanDelos: a dictionary-based method forpan-genome content discovery / Bonnici, V; Giugno, R; Manca, V. - In: BMC BIOINFORMATICS. - ISSN 1471-2105. - 19:15(2018), pp. 48-59. [10.1186/s12859-018-2417-6]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2901676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact