Let Q_3 be the complex 3-quadric endowed with its standard complex conformal structure. We study the complex conformal geometry of isotropic curves in Q_3. By an isotropic curve, we mean a nonconstant holomorphic map from a Riemann surface into Q_3, null with respect to the conformal structure of Q_3. The relations between isotropic curves and a number of relevant classes of surfaces in Riemannian and Lorentzian spaceforms are discussed.

Conformal geometry of isotropic curves in the complex quadric / Musso, Emilio; Nicolodi, Lorenzo. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - 33:8(2022). [10.1142/S0129167X22500549]

Conformal geometry of isotropic curves in the complex quadric

Lorenzo Nicolodi
2022

Abstract

Let Q_3 be the complex 3-quadric endowed with its standard complex conformal structure. We study the complex conformal geometry of isotropic curves in Q_3. By an isotropic curve, we mean a nonconstant holomorphic map from a Riemann surface into Q_3, null with respect to the conformal structure of Q_3. The relations between isotropic curves and a number of relevant classes of surfaces in Riemannian and Lorentzian spaceforms are discussed.
Conformal geometry of isotropic curves in the complex quadric / Musso, Emilio; Nicolodi, Lorenzo. - In: INTERNATIONAL JOURNAL OF MATHEMATICS. - ISSN 0129-167X. - 33:8(2022). [10.1142/S0129167X22500549]
File in questo prodotto:
File Dimensione Formato  
IsotropicQ3VF.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 7.56 MB
Formato Adobe PDF
7.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2901334
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact