Dynamic languages, such as JavaScript, employ string-to-code primitives to turn dynamically generated text into executable code at run-time. These features make standard static analysis extremely hard if not impossible, because its essential data structures, i.e., the control-flow graph and the system of recursive equations associated with the program to analyze, are themselves dynamically mutating objects. Nevertheless, assembling code at run-time by manipulating strings, such as by eval in JavaScript, has been always strongly discouraged, since it is often recognized that "eval is evil,"leading static analyzers to not consider such statements or ignoring their effects. Unfortunately, the lack of formal approaches to analyze string-to-code statements pose a perfect habitat for malicious code, that is surely evil and do not respect good practice rules, allowing them to hide malicious intents as strings to be converted to code and making static analyses blind to the real malicious aim of the code. Hence, the need to handle string-to-code statements approximating what they can execute, and therefore allowing the analysis to continue (even in the presence of dynamically generated program statements) with an acceptable degree of precision, should be clear. To reach this goal, we propose a static analysis allowing us to collect string values and to soundly over-approximate and analyze the code potentially executed by a string-to-code statement.

Analyzing Dynamic Code: A Sound Abstract Interpreter for Evil Eval / Arceri, V.; Mastroeni, I.. - In: ACM TRANSACTIONS ON PRIVACY AND SECURITY. - ISSN 2471-2566. - 24:2(2021).

Analyzing Dynamic Code: A Sound Abstract Interpreter for Evil Eval

Arceri V.;
2021

Abstract

Dynamic languages, such as JavaScript, employ string-to-code primitives to turn dynamically generated text into executable code at run-time. These features make standard static analysis extremely hard if not impossible, because its essential data structures, i.e., the control-flow graph and the system of recursive equations associated with the program to analyze, are themselves dynamically mutating objects. Nevertheless, assembling code at run-time by manipulating strings, such as by eval in JavaScript, has been always strongly discouraged, since it is often recognized that "eval is evil,"leading static analyzers to not consider such statements or ignoring their effects. Unfortunately, the lack of formal approaches to analyze string-to-code statements pose a perfect habitat for malicious code, that is surely evil and do not respect good practice rules, allowing them to hide malicious intents as strings to be converted to code and making static analyses blind to the real malicious aim of the code. Hence, the need to handle string-to-code statements approximating what they can execute, and therefore allowing the analysis to continue (even in the presence of dynamically generated program statements) with an acceptable degree of precision, should be clear. To reach this goal, we propose a static analysis allowing us to collect string values and to soundly over-approximate and analyze the code potentially executed by a string-to-code statement.
Analyzing Dynamic Code: A Sound Abstract Interpreter for Evil Eval / Arceri, V.; Mastroeni, I.. - In: ACM TRANSACTIONS ON PRIVACY AND SECURITY. - ISSN 2471-2566. - 24:2(2021).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2899222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact