It is becoming common to complement genome-wide association studies (GWAS) with gene-set enrichment analysis to deepen the understanding of the biological pathways affecting quantitative traits. Our objective was to conduct a gene ontology and pathway-based analysis to identify possible biological mechanisms involved in the regulation of bovine milk technological traits: coagulation properties, curd firmness modeling, individual cheese yield (CY), and milk nutrient recovery into the curd (REC) or whey loss traits. Results from 2 previous GWAS studies using 1,011 cows genotyped for 50k single nucleotide polymorphisms were used. Overall, the phenotypes analyzed consisted of 3 traditional milk coagulation property measures [RCT: rennet coagulation time defined as the time (min) from addition of enzyme to the beginning of coagulation; k20: the interval (min) from RCT to the time at which a curd firmness of 20 mm is attained; a30: a measure of the extent of curd firmness (mm) 30 min after coagulant addition], 6 curd firmness modeling traits [RCTeq: RCT estimated through the CF equation (min); CFP: potential asymptotic curd firmness (mm); kCF: curd-firming rate constant (% × min−1); kSR: syneresis rate constant (% × min−1); CFmax: maximum curd firmness (mm); and tmax: time to CFmax (min)], 3 individual CY-related traits expressing the weight of fresh curd (%CYCURD), curd solids (%CYSOLIDS), and curd moisture (%CYWATER) as a percentage of weight of milk processed and 4 milk nutrient and energy recoveries in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY calculated as the % ratio between the nutrient in curd and the corresponding nutrient in processed milk), milk pH, and protein percentage. Each trait was analyzed separately. In total, 13,269 annotated genes were used in the analysis. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases were queried for enrichment analyses. Overall, 21 Gene Ontology and 17 Kyoto Encyclopedia of Genes and Genomes categories were significantly associated (false discovery rate at 5%) with 7 traits (RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS, and RECENERGY), with some being in common between traits. The significantly enriched categories included calcium signaling pathway, salivary secretion, metabolic pathways, carbohydrate digestion and absorption, the tight junction and the phosphatidylinositol pathways, as well as pathways related to the bovine mammary gland health status, and contained a total of 150 genes spanning all chromosomes but 9, 20, and 27. This study provided new insights into the regulation of bovine milk coagulation and cheese ability that were not captured by the GWAS.

Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle / Dadousis, C.; Pegolo, S.; Rosa, G. J. M.; Gianola, D.; Bittante, G.; Cecchinato, A.. - In: JOURNAL OF DAIRY SCIENCE. - ISSN 0022-0302. - 100:2(2017), pp. 1223-1231. [10.3168/jds.2016-11587]

Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle

Dadousis C.;
2017-01-01

Abstract

It is becoming common to complement genome-wide association studies (GWAS) with gene-set enrichment analysis to deepen the understanding of the biological pathways affecting quantitative traits. Our objective was to conduct a gene ontology and pathway-based analysis to identify possible biological mechanisms involved in the regulation of bovine milk technological traits: coagulation properties, curd firmness modeling, individual cheese yield (CY), and milk nutrient recovery into the curd (REC) or whey loss traits. Results from 2 previous GWAS studies using 1,011 cows genotyped for 50k single nucleotide polymorphisms were used. Overall, the phenotypes analyzed consisted of 3 traditional milk coagulation property measures [RCT: rennet coagulation time defined as the time (min) from addition of enzyme to the beginning of coagulation; k20: the interval (min) from RCT to the time at which a curd firmness of 20 mm is attained; a30: a measure of the extent of curd firmness (mm) 30 min after coagulant addition], 6 curd firmness modeling traits [RCTeq: RCT estimated through the CF equation (min); CFP: potential asymptotic curd firmness (mm); kCF: curd-firming rate constant (% × min−1); kSR: syneresis rate constant (% × min−1); CFmax: maximum curd firmness (mm); and tmax: time to CFmax (min)], 3 individual CY-related traits expressing the weight of fresh curd (%CYCURD), curd solids (%CYSOLIDS), and curd moisture (%CYWATER) as a percentage of weight of milk processed and 4 milk nutrient and energy recoveries in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY calculated as the % ratio between the nutrient in curd and the corresponding nutrient in processed milk), milk pH, and protein percentage. Each trait was analyzed separately. In total, 13,269 annotated genes were used in the analysis. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases were queried for enrichment analyses. Overall, 21 Gene Ontology and 17 Kyoto Encyclopedia of Genes and Genomes categories were significantly associated (false discovery rate at 5%) with 7 traits (RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS, and RECENERGY), with some being in common between traits. The significantly enriched categories included calcium signaling pathway, salivary secretion, metabolic pathways, carbohydrate digestion and absorption, the tight junction and the phosphatidylinositol pathways, as well as pathways related to the bovine mammary gland health status, and contained a total of 150 genes spanning all chromosomes but 9, 20, and 27. This study provided new insights into the regulation of bovine milk coagulation and cheese ability that were not captured by the GWAS.
2017
Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle / Dadousis, C.; Pegolo, S.; Rosa, G. J. M.; Gianola, D.; Bittante, G.; Cecchinato, A.. - In: JOURNAL OF DAIRY SCIENCE. - ISSN 0022-0302. - 100:2(2017), pp. 1223-1231. [10.3168/jds.2016-11587]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2898654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact