Polynucleotides (PN) have long been known as an effective supportive therapy for wound healing. The present study investigated whether a hydrogel formulation containing PN and hyaluronic acid (PN + HA) could promote wound healing in an in vitro model of gingival fibroblasts. PN promoted cell growth and viability as assessed by different assays, and PN + HA, though not significantly further increasing cell growth as compared to PN, supported the formation of dense multilayered cell nodules. PN promoted fibroblasts’ clonogenic efficiency and PN + HA further enhanced the formation of more numerous dense colonies. PN + HA appeared to significantly increase the expression of collagen 1a1 and 3a1, while not affecting proteoglycans deposition. Inter-estingly, when tested in a scratch assay, PN + HA achieved gap closure after 48 h, while cells in the comparison groups had not completely bridged the scratch even after 96 h. Taken together, these results demonstrate that PN + HA is a promising candidate for a supportive therapy to promote soft tissue healing in the oral cavity.
A biomimetic polynucleotides–hyaluronic acid hydrogel promotes wound healing in a primary gingival fibroblast model / Colangelo, M. T.; Belletti, S.; Govoni, P.; Guizzardi, S.; Galli, C.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 11:10(2021), p. 4405.4405. [10.3390/app11104405]
A biomimetic polynucleotides–hyaluronic acid hydrogel promotes wound healing in a primary gingival fibroblast model
Belletti S.;Govoni P.;Guizzardi S.;Galli C.
2021-01-01
Abstract
Polynucleotides (PN) have long been known as an effective supportive therapy for wound healing. The present study investigated whether a hydrogel formulation containing PN and hyaluronic acid (PN + HA) could promote wound healing in an in vitro model of gingival fibroblasts. PN promoted cell growth and viability as assessed by different assays, and PN + HA, though not significantly further increasing cell growth as compared to PN, supported the formation of dense multilayered cell nodules. PN promoted fibroblasts’ clonogenic efficiency and PN + HA further enhanced the formation of more numerous dense colonies. PN + HA appeared to significantly increase the expression of collagen 1a1 and 3a1, while not affecting proteoglycans deposition. Inter-estingly, when tested in a scratch assay, PN + HA achieved gap closure after 48 h, while cells in the comparison groups had not completely bridged the scratch even after 96 h. Taken together, these results demonstrate that PN + HA is a promising candidate for a supportive therapy to promote soft tissue healing in the oral cavity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.