We discuss a stochastic interacting particles’ system connected to dyadic models of turbulence, defining suitable classes of solutions and proving their existence and uniqueness. We investigate the regularity of a particular family of solutions, called moderate, and we conclude with existence and uniqueness of invariant measures associated with such moderate solutions.

Linear Stochastic Dyadic Model / Bianchi, L. A.; Morandin, F.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 183:2(2021). [10.1007/s10955-021-02753-x]

Linear Stochastic Dyadic Model

Morandin F.
2021

Abstract

We discuss a stochastic interacting particles’ system connected to dyadic models of turbulence, defining suitable classes of solutions and proving their existence and uniqueness. We investigate the regularity of a particular family of solutions, called moderate, and we conclude with existence and uniqueness of invariant measures associated with such moderate solutions.
Linear Stochastic Dyadic Model / Bianchi, L. A.; Morandin, F.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 183:2(2021). [10.1007/s10955-021-02753-x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2896220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact