Cerebral cortical development is controlled by key transcription factors that specify the neuronal identities in the different layers. The mechanisms controlling their expression in distinct cells are only partially known. We investigated the expression and stability of Tbr1, Bcl11b, Fezf2, Satb2, and Cux1 mRNAs in single developing mouse cortical cells. We observe that Satb2 mRNA appears much earlier than its protein and in a set of cells broader than expected, suggesting an initial inhibition of its translation, subsequently released during development. Mechanistically, Satb2 3′UTR modulates protein translation of GFP reporters during mouse corticogenesis. We select miR-541, a eutherian-specific miRNA, and miR-92a/b as the best candidates responsible for SATB2 inhibition, being strongly expressed in early and reduced in late progenitor cells. Their inactivation triggers robust and premature SATB2 translation in both mouse and human cortical cells. Our findings indicate RNA interference as a major mechanism in timing cortical cell identities.

A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation / Martins, M.; Galfre, S.; Terrigno, M.; Pandolfini, L.; Appolloni, I.; Dunville, K.; Marranci, A.; Rizzo, M.; Mercatanti, A.; Poliseno, L.; Morandin, F.; Pietrosanto, M.; Helmer-Citterich, M.; Malatesta, P.; Vignali, R.; Cremisi, F.. - In: STEM CELL REPORTS. - ISSN 2213-6711. - 16:6(2021), pp. 1496-1509. [10.1016/j.stemcr.2021.04.020]

A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation

Morandin F.;
2021

Abstract

Cerebral cortical development is controlled by key transcription factors that specify the neuronal identities in the different layers. The mechanisms controlling their expression in distinct cells are only partially known. We investigated the expression and stability of Tbr1, Bcl11b, Fezf2, Satb2, and Cux1 mRNAs in single developing mouse cortical cells. We observe that Satb2 mRNA appears much earlier than its protein and in a set of cells broader than expected, suggesting an initial inhibition of its translation, subsequently released during development. Mechanistically, Satb2 3′UTR modulates protein translation of GFP reporters during mouse corticogenesis. We select miR-541, a eutherian-specific miRNA, and miR-92a/b as the best candidates responsible for SATB2 inhibition, being strongly expressed in early and reduced in late progenitor cells. Their inactivation triggers robust and premature SATB2 translation in both mouse and human cortical cells. Our findings indicate RNA interference as a major mechanism in timing cortical cell identities.
A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation / Martins, M.; Galfre, S.; Terrigno, M.; Pandolfini, L.; Appolloni, I.; Dunville, K.; Marranci, A.; Rizzo, M.; Mercatanti, A.; Poliseno, L.; Morandin, F.; Pietrosanto, M.; Helmer-Citterich, M.; Malatesta, P.; Vignali, R.; Cremisi, F.. - In: STEM CELL REPORTS. - ISSN 2213-6711. - 16:6(2021), pp. 1496-1509. [10.1016/j.stemcr.2021.04.020]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2896219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact