Scintillators, materials that produce light pulses upon interaction with ionizing radiation, are widely employed in radiation detectors. In advanced medical-imaging technologies, fast scintillators enabling a time resolution of tens of picoseconds are required to achieve high-resolution imaging at the millimetre length scale. Here we demonstrate that composite materials based on fluorescent metal–organic framework (MOF) nanocrystals can work as fast scintillators. We present a prototype scintillator fabricated by embedding MOF nanocrystals in a polymer. The MOF comprises zirconium oxo-hydroxy clusters, high-Z linking nodes interacting with the ionizing radiation, arranged in an orderly fashion at a nanometric distance from 9,10-diphenylanthracene ligand emitters. Their incorporation in the framework enables fast sensitization of the ligand fluorescence, thus avoiding issues typically arising from the intimate mixing of complementary elements. This proof-of-concept prototype device shows an ultrafast scintillation rise time of ~50 ps, thus supporting the development of new scintillators based on engineered fluorescent MOF nanocrystals.
Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals / Perego, J.; Villa, I.; Pedrini, A.; Padovani, E. C.; Crapanzano, R.; Vedda, A.; Dujardin, C.; Bezuidenhout, C. X.; Bracco, S.; Sozzani, P. E.; Comotti, A.; Gironi, L.; Beretta, M.; Salomoni, M.; Kratochwil, N.; Gundacker, S.; Auffray, E.; Meinardi, F.; Monguzzi, A.. - In: NATURE PHOTONICS. - ISSN 1749-4885. - 15:5(2021), pp. 393-400. [10.1038/s41566-021-00769-z]
Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals
Pedrini A.;
2021-01-01
Abstract
Scintillators, materials that produce light pulses upon interaction with ionizing radiation, are widely employed in radiation detectors. In advanced medical-imaging technologies, fast scintillators enabling a time resolution of tens of picoseconds are required to achieve high-resolution imaging at the millimetre length scale. Here we demonstrate that composite materials based on fluorescent metal–organic framework (MOF) nanocrystals can work as fast scintillators. We present a prototype scintillator fabricated by embedding MOF nanocrystals in a polymer. The MOF comprises zirconium oxo-hydroxy clusters, high-Z linking nodes interacting with the ionizing radiation, arranged in an orderly fashion at a nanometric distance from 9,10-diphenylanthracene ligand emitters. Their incorporation in the framework enables fast sensitization of the ligand fluorescence, thus avoiding issues typically arising from the intimate mixing of complementary elements. This proof-of-concept prototype device shows an ultrafast scintillation rise time of ~50 ps, thus supporting the development of new scintillators based on engineered fluorescent MOF nanocrystals.File | Dimensione | Formato | |
---|---|---|---|
Composite_fast_scintillators_based_on_high-Z_fluor.pdf
solo utenti autorizzati
Descrizione: Published article
Tipologia:
Versione (PDF) editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.91 MB
Formato
Adobe PDF
|
1.91 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.