We prove local gradient bounds and interior Hölder estimates for the first derivatives of functions u ∈ W1,loc1(Ω) which locally minimize the variational integral I(u) = ∫Ω f(∇u)dx subject to the side condition Ψ1 ≤ u ≤ Ψ2. We establish these results for various classes of integrands f with non-standard growth. For example, in the case of smooth f the (s,μ,q)-condition is sufficient. A second class consists of all convex functions f with (p,q)-growth. © Heldermann Verlag.

A priori gradient bounds and local C1,α-estimates for (double) obstacle problems under non-standard growth conditions / Bildhauer, M.; Fuchs, M.; Mingione, G.. - In: ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN. - ISSN 0232-2064. - 20:4(2001), pp. 959-985.

A priori gradient bounds and local C1,α-estimates for (double) obstacle problems under non-standard growth conditions

Mingione G.
2001-01-01

Abstract

We prove local gradient bounds and interior Hölder estimates for the first derivatives of functions u ∈ W1,loc1(Ω) which locally minimize the variational integral I(u) = ∫Ω f(∇u)dx subject to the side condition Ψ1 ≤ u ≤ Ψ2. We establish these results for various classes of integrands f with non-standard growth. For example, in the case of smooth f the (s,μ,q)-condition is sufficient. A second class consists of all convex functions f with (p,q)-growth. © Heldermann Verlag.
2001
A priori gradient bounds and local C1,α-estimates for (double) obstacle problems under non-standard growth conditions / Bildhauer, M.; Fuchs, M.; Mingione, G.. - In: ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN. - ISSN 0232-2064. - 20:4(2001), pp. 959-985.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2895060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact