The aim of this study was to investigate the direct effect of leptin on GH gene expression and secretion and the role of nitric oxide as a possible mediator in pig anterior pituitary cells. Pituitary cells from adult sows were treated for 4 or 24 h with rhleptin (from 0.1 nM to 1 μM) alone or in association with GHRH (10 nM) or hexarelin (10 nM). At the end of incubation, medium was collected for GH and nitric oxide determination by ELISA and Griess test, respectively. Total RNA was collected from cells, and GH gene expression was measured by RT-PCR. Leptin significantly (P < 0.001) stimulated GH secretion in both incubation periods. The maximum response was induced by 10 nM leptin; furthermore, a significant interaction (P < 0.002) between leptin and GHRH (P < 0.03) and between leptin and hexarelin was observed when the molecules were used in association. GH gene expression was significantly increased (at least P < 0.05) by hexarelin, GHRH, and leptin (1000 and 100 nM) after 24 h of treatment. Leptin (10 nM and 1 μM) significantly (P < 0.05) increased nitric oxide production, whereas S-nitroso-N-acetyl-penicillamine (from 0.01-1000 nM) significantly (P < 0.05) stimulated GH secretion. These data demonstrate that leptin directly influences GH regulation at the pituitary level, and nitric oxide may be involved in this function.
Leptin regulates GH gene expression and secretion and nitric oxide production in pig pituitary cells / Baratta, M.; Saleri, R.; Mainardi, G. L.; Valle, D.; Giustina, A.; Tamanini, C.. - In: ENDOCRINOLOGY. - ISSN 0013-7227. - 143:2(2002), pp. 551-557. [10.1210/endo.143.2.8653]
Leptin regulates GH gene expression and secretion and nitric oxide production in pig pituitary cells
Baratta M.
Writing – Review & Editing
;Saleri R.Membro del Collaboration Group
;Tamanini C.Membro del Collaboration Group
2002-01-01
Abstract
The aim of this study was to investigate the direct effect of leptin on GH gene expression and secretion and the role of nitric oxide as a possible mediator in pig anterior pituitary cells. Pituitary cells from adult sows were treated for 4 or 24 h with rhleptin (from 0.1 nM to 1 μM) alone or in association with GHRH (10 nM) or hexarelin (10 nM). At the end of incubation, medium was collected for GH and nitric oxide determination by ELISA and Griess test, respectively. Total RNA was collected from cells, and GH gene expression was measured by RT-PCR. Leptin significantly (P < 0.001) stimulated GH secretion in both incubation periods. The maximum response was induced by 10 nM leptin; furthermore, a significant interaction (P < 0.002) between leptin and GHRH (P < 0.03) and between leptin and hexarelin was observed when the molecules were used in association. GH gene expression was significantly increased (at least P < 0.05) by hexarelin, GHRH, and leptin (1000 and 100 nM) after 24 h of treatment. Leptin (10 nM and 1 μM) significantly (P < 0.05) increased nitric oxide production, whereas S-nitroso-N-acetyl-penicillamine (from 0.01-1000 nM) significantly (P < 0.05) stimulated GH secretion. These data demonstrate that leptin directly influences GH regulation at the pituitary level, and nitric oxide may be involved in this function.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.