We analyze the lower semicontinuous envelope of the curvature functional of Cartesian surfaces in codimension one. To this aim, following the approach by Anzellotti–Serapioni–Tamanini, we study the class of currents that naturally arise as weak limits of Gauss graphs of smooth functions. The curvature measures are then studied in the non-parametric case. Concerning homogeneous functions, some model examples are studied in detail. Finally, a new gap phenomenon is observed.
On the Curvature Energy of Cartesian Surfaces / Mucci, D.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - (2021). [10.1007/s12220-020-00601-0]
On the Curvature Energy of Cartesian Surfaces
Mucci D.
2021-01-01
Abstract
We analyze the lower semicontinuous envelope of the curvature functional of Cartesian surfaces in codimension one. To this aim, following the approach by Anzellotti–Serapioni–Tamanini, we study the class of currents that naturally arise as weak limits of Gauss graphs of smooth functions. The curvature measures are then studied in the non-parametric case. Concerning homogeneous functions, some model examples are studied in detail. Finally, a new gap phenomenon is observed.File | Dimensione | Formato | |
---|---|---|---|
Gauss_rev.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
287.03 kB
Formato
Adobe PDF
|
287.03 kB | Adobe PDF | Visualizza/Apri |
Mu17.pdf
solo utenti autorizzati
Tipologia:
Versione (PDF) editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
734.79 kB
Formato
Adobe PDF
|
734.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.