We analyze the lower semicontinuous envelope of the curvature functional of Cartesian surfaces in codimension one. To this aim, following the approach by Anzellotti–Serapioni–Tamanini, we study the class of currents that naturally arise as weak limits of Gauss graphs of smooth functions. The curvature measures are then studied in the non-parametric case. Concerning homogeneous functions, some model examples are studied in detail. Finally, a new gap phenomenon is observed.

On the Curvature Energy of Cartesian Surfaces / Mucci, D.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - (2021). [10.1007/s12220-020-00601-0]

On the Curvature Energy of Cartesian Surfaces

Mucci D.
2021-01-01

Abstract

We analyze the lower semicontinuous envelope of the curvature functional of Cartesian surfaces in codimension one. To this aim, following the approach by Anzellotti–Serapioni–Tamanini, we study the class of currents that naturally arise as weak limits of Gauss graphs of smooth functions. The curvature measures are then studied in the non-parametric case. Concerning homogeneous functions, some model examples are studied in detail. Finally, a new gap phenomenon is observed.
2021
On the Curvature Energy of Cartesian Surfaces / Mucci, D.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - (2021). [10.1007/s12220-020-00601-0]
File in questo prodotto:
File Dimensione Formato  
Gauss_rev.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 287.03 kB
Formato Adobe PDF
287.03 kB Adobe PDF Visualizza/Apri
Mu17.pdf

solo utenti autorizzati

Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 734.79 kB
Formato Adobe PDF
734.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2888939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact