The Low Level Laser Therapy (LLLT) is an innovative and increasing therapeutic technique in Veterinary Medicine. As in Human Medicine, the low power red/near-infrared laser light could be used to reduce inflammatory conditions, induce analgesia and promote damaged tissues repair, both in conventional animals like horses, dogs and cats and in unconventional ones, including reptiles, birds and exotic mammals. Since A.Eistein (1917) and E.Mester (1968) built its physical and biochemical fundamentals, a growing number of researches, over the years, have expanded the knowledge of the molecular process considered today at the basis of the macroscopic therapeutic effects. Producing a photochemical tissue interaction, laser light is absorbed by the mitochondrial respiratory chain stimulating the generation of ATP, ROS and NO; this determines a modulation in gene expression of proteins playing key roles in cellular processes as tissue repair, inflammatory response and pain control. Different animal pathological conditions could significantly benefit from this therapy, such as acute/chronic muscle-skeletal disorders, dental afflictions, dermatitis, otitis, stomatitis and different kind of skin lesions, as traumatic or post-operative ones. Furthermore, other significant applications are developing scientifically: the treatment of internal organ diseases, the regenerative effects on nervous tissue and the possibility of a beneficial cell-specific cytotoxicity, relevant for oncological cases, are some of these. A high-quality research is therefore crucial for this quickly expanding field of Veterinary Medicine, in order to find the most effective protocols and the ideal doses for each pathological conditions, aiming to always ensure the best and up-todate animal care.

Approach and potentiality of low level laser therapy in veterinary medicine / Paterniani, V.; Grolli, S.. - In: PROGRESS IN BIOMEDICAL OPTICS AND IMAGING. - ISSN 1605-7422. - 10582:(2018), p. 9. [10.1117/12.2315401]

Approach and potentiality of low level laser therapy in veterinary medicine

Paterniani V.;Grolli S.
2018-01-01

Abstract

The Low Level Laser Therapy (LLLT) is an innovative and increasing therapeutic technique in Veterinary Medicine. As in Human Medicine, the low power red/near-infrared laser light could be used to reduce inflammatory conditions, induce analgesia and promote damaged tissues repair, both in conventional animals like horses, dogs and cats and in unconventional ones, including reptiles, birds and exotic mammals. Since A.Eistein (1917) and E.Mester (1968) built its physical and biochemical fundamentals, a growing number of researches, over the years, have expanded the knowledge of the molecular process considered today at the basis of the macroscopic therapeutic effects. Producing a photochemical tissue interaction, laser light is absorbed by the mitochondrial respiratory chain stimulating the generation of ATP, ROS and NO; this determines a modulation in gene expression of proteins playing key roles in cellular processes as tissue repair, inflammatory response and pain control. Different animal pathological conditions could significantly benefit from this therapy, such as acute/chronic muscle-skeletal disorders, dental afflictions, dermatitis, otitis, stomatitis and different kind of skin lesions, as traumatic or post-operative ones. Furthermore, other significant applications are developing scientifically: the treatment of internal organ diseases, the regenerative effects on nervous tissue and the possibility of a beneficial cell-specific cytotoxicity, relevant for oncological cases, are some of these. A high-quality research is therefore crucial for this quickly expanding field of Veterinary Medicine, in order to find the most effective protocols and the ideal doses for each pathological conditions, aiming to always ensure the best and up-todate animal care.
2018
Approach and potentiality of low level laser therapy in veterinary medicine / Paterniani, V.; Grolli, S.. - In: PROGRESS IN BIOMEDICAL OPTICS AND IMAGING. - ISSN 1605-7422. - 10582:(2018), p. 9. [10.1117/12.2315401]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2885279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact