We propose a way to compute the hedging Delta using the Malliavin weight method. Our approach, which we name the λ-method, generally outperforms the standard Monte Carlo finite difference method, especially for discontinuous payoffs. Furthermore, our approach is nonparametric, as we only assume a general local volatility model and we substitute the volatility and the other processes involved in the Greek formula with quantities that can be nonparametrically estimated from a given time series of observed prices.

Nonparametric malliavin–monte carlo computation of hedging greeks / Mancino, M. E.; Sanfelici, S.. - In: RISKS. - ISSN 2227-9091. - 8:4(2020), pp. 1-17. [10.3390/risks8040120]

Nonparametric malliavin–monte carlo computation of hedging greeks

Sanfelici S.
2020-01-01

Abstract

We propose a way to compute the hedging Delta using the Malliavin weight method. Our approach, which we name the λ-method, generally outperforms the standard Monte Carlo finite difference method, especially for discontinuous payoffs. Furthermore, our approach is nonparametric, as we only assume a general local volatility model and we substitute the volatility and the other processes involved in the Greek formula with quantities that can be nonparametrically estimated from a given time series of observed prices.
2020
Nonparametric malliavin–monte carlo computation of hedging greeks / Mancino, M. E.; Sanfelici, S.. - In: RISKS. - ISSN 2227-9091. - 8:4(2020), pp. 1-17. [10.3390/risks8040120]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2884394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact