We study the asymptotic behavior as epsilon goes to 0 of an appropriate scaling of the following nonlocal Allen-Cahn energy,E-epsilon(s)(u) = epsilon(2s) integral integral(IxI) vertical bar u(x) - u(y)vertical bar(2)/vertical bar x - y vertical bar(1+2s) dxdy + integral(I) W(u) dx,where I is an interval in R, and W is a double-well potential. We provide a Gamma-convergence result for any s is an element of (0, 1), by extending the case when s = 1/2 studied by Alberti, Bouchitte and Seppecher in [2]. We also investigate the convergence as s NE arrow 1 of the related optimal profile problem to the local counterpart.

Gamma-Convergence for one-dimensional nonlocal phase transition energies / Palatucci, Giampiero; Vincini, Simone. - In: LE MATEMATICHE. - ISSN 0373-3505. - 75:1(2020), pp. 195-220. [10.4418/2020.75.1.10]

Gamma-Convergence for one-dimensional nonlocal phase transition energies

Palatucci, Giampiero
;
Vincini, Simone
2020-01-01

Abstract

We study the asymptotic behavior as epsilon goes to 0 of an appropriate scaling of the following nonlocal Allen-Cahn energy,E-epsilon(s)(u) = epsilon(2s) integral integral(IxI) vertical bar u(x) - u(y)vertical bar(2)/vertical bar x - y vertical bar(1+2s) dxdy + integral(I) W(u) dx,where I is an interval in R, and W is a double-well potential. We provide a Gamma-convergence result for any s is an element of (0, 1), by extending the case when s = 1/2 studied by Alberti, Bouchitte and Seppecher in [2]. We also investigate the convergence as s NE arrow 1 of the related optimal profile problem to the local counterpart.
2020
Gamma-Convergence for one-dimensional nonlocal phase transition energies / Palatucci, Giampiero; Vincini, Simone. - In: LE MATEMATICHE. - ISSN 0373-3505. - 75:1(2020), pp. 195-220. [10.4418/2020.75.1.10]
File in questo prodotto:
File Dimensione Formato  
1982-Article Text-5948-1-10-20191224.pdf

accesso aperto

Descrizione: Palatucci-Vincini, Matematiche (2020), open access, PDF editoriale
Tipologia: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 217.78 kB
Formato Adobe PDF
217.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2884337
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact