The realization of tunable and functionalized MOFs is a winning strategy for CO2capture. Here we report on a series of robust Fe-MOFs with triangular channels constructed by rod-like fluorinated pyrazolate ligands, comprising an increasing number of fluorine atoms on the centralp-phenylene core (F = 1, 2, and 4). This yielded a series of isoreticular frameworks, engineered with orientational flexibility of the fluorinated aryl rings pivoted on ethynyl groups with an sp2-sp soft rotary barrier, providing a stable axel, which supported reorientable C-F dipoles. A combined approach, including powder X-ray diffraction, multinuclear solid-state NMR (2D1H-13C,19F, hyperpolarized129Xe NMR and distance measurements by paramagnetic shift), gas-adsorption and microcalorimetry, enabled the exhaustive description of the fluorinated ring arrangement and the organization of functionalized sites for accommodating CO2. In the tetrafluoro-aryl-derivative MOF, protrusion of perfluorinated rings towards the channel space plays a major role in CO2capture. Partially fluorinated aryl rings of mono- and di-fluoro MOFs turn to retract into the channel-walls to form continuous ribbons of inter-strut supramolecular interactions, contributing to the robustness of the overall architecture. Detailed computational models obtained using GCMC and DFT of CO2diffusion and interactions in MOFs showed how the gas molecules approach the channel walls. The highly occupied sites are aligned at the corners of the triangular channels, wherein fluorine atoms participate in host-CO2interactions. A CO2-matrix adsorption enthalpy of 33 kJ mol−1, suitable for capture/delivery cycles, was accurately measuredin situby simultaneous acquisition of microcalorimetric and volumetric-isotherm data. Thus, the designed advantages of rotationally flexible fluorinated moieties were successfully explored.

Reorientable fluorinated aryl rings in triangular channel Fe-MOFs: an investigation on CO2-matrix interactions / Perego, J.; Bezuidenhout, C. X.; Pedrini, A.; Bracco, S.; Negroni, M.; Comotti, A.; Sozzani, P.. - In: JOURNAL OF MATERIALS CHEMISTRY. A. - ISSN 2050-7488. - 8:22(2020), pp. 11406-11413. [10.1039/d0ta02529a]

Reorientable fluorinated aryl rings in triangular channel Fe-MOFs: an investigation on CO2-matrix interactions

Pedrini A.;
2020

Abstract

The realization of tunable and functionalized MOFs is a winning strategy for CO2capture. Here we report on a series of robust Fe-MOFs with triangular channels constructed by rod-like fluorinated pyrazolate ligands, comprising an increasing number of fluorine atoms on the centralp-phenylene core (F = 1, 2, and 4). This yielded a series of isoreticular frameworks, engineered with orientational flexibility of the fluorinated aryl rings pivoted on ethynyl groups with an sp2-sp soft rotary barrier, providing a stable axel, which supported reorientable C-F dipoles. A combined approach, including powder X-ray diffraction, multinuclear solid-state NMR (2D1H-13C,19F, hyperpolarized129Xe NMR and distance measurements by paramagnetic shift), gas-adsorption and microcalorimetry, enabled the exhaustive description of the fluorinated ring arrangement and the organization of functionalized sites for accommodating CO2. In the tetrafluoro-aryl-derivative MOF, protrusion of perfluorinated rings towards the channel space plays a major role in CO2capture. Partially fluorinated aryl rings of mono- and di-fluoro MOFs turn to retract into the channel-walls to form continuous ribbons of inter-strut supramolecular interactions, contributing to the robustness of the overall architecture. Detailed computational models obtained using GCMC and DFT of CO2diffusion and interactions in MOFs showed how the gas molecules approach the channel walls. The highly occupied sites are aligned at the corners of the triangular channels, wherein fluorine atoms participate in host-CO2interactions. A CO2-matrix adsorption enthalpy of 33 kJ mol−1, suitable for capture/delivery cycles, was accurately measuredin situby simultaneous acquisition of microcalorimetric and volumetric-isotherm data. Thus, the designed advantages of rotationally flexible fluorinated moieties were successfully explored.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2882743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact