This study aimed to assess the feasibility of visible/near-infrared reflectance (Vis-NIR) and near-infrared transmittance (NIT) spectroscopy to predict total and gelatinized starch and fiber fractions in extruded dry dog food. Reference laboratory analyses were performed on 81 samples, and the spectrum of each ground sample was obtained through Vis-NIR and NIT spectrometers. Prediction equations for each instrument were developed by modified partial least squares regressions and validated by cross-(CrV) and external validation (ExV) procedures. All studied traits were better predicted by Vis-NIR than NIT spectroscopy. With Vis-NIR, excellent prediction models were obtained for total starch (residual predictive deviation; RPDCrV = 6.33; RPDExV = 4.43), gelatinized starch (RPDCrV = 4.62; RPDExV = 4.36), neutral detergent fiber (NDF; RPDCrV = 3.93; RPDExV = 4.31), and acid detergent fiber (ADF; RPDCrV = 5.80; RPDExV = 5.67). With NIT, RPDCrV ranged from 1.75 (ADF) to 2.61 (acid detergent lignin, ADL) and RPDExV from 1.71 (ADL) to 2.16 (total starch). In conclusion, results of the present study demonstrated the feasibility of at-line Vis-NIR spectroscopy in predicting total and gelatinized starch, NDF, and ADF, with lower accuracy for ADL, whereas results do not support the applicability of NIT spectroscopy to predict those traits.

At-line prediction of gelatinized starch and fiber fractions in extruded dry dog food using different near-infrared spectroscopy technologies / Goi, A.; Manuelian, C. L.; Righi, F.; De Marchi, M.. - In: ANIMALS. - ISSN 2076-2615. - 10:5(2020), p. 862. [10.3390/ani10050862]

At-line prediction of gelatinized starch and fiber fractions in extruded dry dog food using different near-infrared spectroscopy technologies

Righi F.;
2020-01-01

Abstract

This study aimed to assess the feasibility of visible/near-infrared reflectance (Vis-NIR) and near-infrared transmittance (NIT) spectroscopy to predict total and gelatinized starch and fiber fractions in extruded dry dog food. Reference laboratory analyses were performed on 81 samples, and the spectrum of each ground sample was obtained through Vis-NIR and NIT spectrometers. Prediction equations for each instrument were developed by modified partial least squares regressions and validated by cross-(CrV) and external validation (ExV) procedures. All studied traits were better predicted by Vis-NIR than NIT spectroscopy. With Vis-NIR, excellent prediction models were obtained for total starch (residual predictive deviation; RPDCrV = 6.33; RPDExV = 4.43), gelatinized starch (RPDCrV = 4.62; RPDExV = 4.36), neutral detergent fiber (NDF; RPDCrV = 3.93; RPDExV = 4.31), and acid detergent fiber (ADF; RPDCrV = 5.80; RPDExV = 5.67). With NIT, RPDCrV ranged from 1.75 (ADF) to 2.61 (acid detergent lignin, ADL) and RPDExV from 1.71 (ADL) to 2.16 (total starch). In conclusion, results of the present study demonstrated the feasibility of at-line Vis-NIR spectroscopy in predicting total and gelatinized starch, NDF, and ADF, with lower accuracy for ADL, whereas results do not support the applicability of NIT spectroscopy to predict those traits.
2020
At-line prediction of gelatinized starch and fiber fractions in extruded dry dog food using different near-infrared spectroscopy technologies / Goi, A.; Manuelian, C. L.; Righi, F.; De Marchi, M.. - In: ANIMALS. - ISSN 2076-2615. - 10:5(2020), p. 862. [10.3390/ani10050862]
File in questo prodotto:
File Dimensione Formato  
animals-10-00862-v2 (1).pdf

accesso aperto

Descrizione: Documento in formato PDF
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 428.06 kB
Formato Adobe PDF
428.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2881545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact