The use of functional traits (FTs) can provide quantitative information to explain macrophyte ecology more effectively than traditional taxonomic-based methods. This research aims to elucidate the trait-based approaches used in recent macrophyte studies to outline their applications, shortcomings, and future challenges. A systematic literature review focused on macrophytes and FTs was carried out on Scopus database (last accessed May 2020). The latest 520 papers published from 2010 to 2020, which represent 70 % of the whole literature selected since 1969, were carefully screened. Reviewed studies mainly investigated: 1) the role of FTs in shaping communities; 2) the responses of macrophytes to environmental gradients; 3) the application of FTs in monitoring anthropic pressures; and 4) the reasons for success of invasive species. Studied areas were concentrated in Europe (41 %) and Asia (32 %), overlooking other important biodiversity hotspots, and only 6.2 % of the world macrophytes species were investigated in dedicated single species studies. The FTs most commonly used include leaf economic and morphological traits, and we noticed a lack of attention on root traits and in general on spatial traits patterns, as well as a relatively poor understanding of how FTs mediate biotic interactions. High-throughput techniques, such as remote sensing, allow to map fine-scale variability of selected traits within and across systems, helping to clarify multiple links of FTs with ecological drivers and processes. We advise to promote investigations on root traits, and to push forward the integration of multiple approaches to better clarify the role of macrophytes at multiple scales.
Functional traits in macrophyte studies: Current trends and future research agenda / Dalla Vecchia, A.; Villa, P.; Bolpagni, R.. - In: AQUATIC BOTANY. - ISSN 0304-3770. - 167:(2020), p. 103290. [10.1016/j.aquabot.2020.103290]
Functional traits in macrophyte studies: Current trends and future research agenda
Dalla Vecchia A.;Bolpagni R.Writing – Review & Editing
2020-01-01
Abstract
The use of functional traits (FTs) can provide quantitative information to explain macrophyte ecology more effectively than traditional taxonomic-based methods. This research aims to elucidate the trait-based approaches used in recent macrophyte studies to outline their applications, shortcomings, and future challenges. A systematic literature review focused on macrophytes and FTs was carried out on Scopus database (last accessed May 2020). The latest 520 papers published from 2010 to 2020, which represent 70 % of the whole literature selected since 1969, were carefully screened. Reviewed studies mainly investigated: 1) the role of FTs in shaping communities; 2) the responses of macrophytes to environmental gradients; 3) the application of FTs in monitoring anthropic pressures; and 4) the reasons for success of invasive species. Studied areas were concentrated in Europe (41 %) and Asia (32 %), overlooking other important biodiversity hotspots, and only 6.2 % of the world macrophytes species were investigated in dedicated single species studies. The FTs most commonly used include leaf economic and morphological traits, and we noticed a lack of attention on root traits and in general on spatial traits patterns, as well as a relatively poor understanding of how FTs mediate biotic interactions. High-throughput techniques, such as remote sensing, allow to map fine-scale variability of selected traits within and across systems, helping to clarify multiple links of FTs with ecological drivers and processes. We advise to promote investigations on root traits, and to push forward the integration of multiple approaches to better clarify the role of macrophytes at multiple scales.File | Dimensione | Formato | |
---|---|---|---|
Dalla Vecchia et al_2020_AquBot_ANF.pdf
Open Access dal 02/10/2020
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
565.73 kB
Formato
Adobe PDF
|
565.73 kB | Adobe PDF | Visualizza/Apri |
Dalla Vecchia et al_2020_AquBot_Editorial.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione (PDF) editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.82 MB
Formato
Adobe PDF
|
2.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.