Let v=2ms+t be a positive integer, where t divides 2ms, and let J be the subgroup of order t of the cyclic group Zv. An integer Heffter array Ht(m,n;s,k) over Zv relative to J is an m×n partially filled array with elements in Zv such that: (a) each row contains s filled cells and each column contains k filled cells; (b) for every x∈Zv∖J, either x or −x appears in the array; (c) the elements in every row and column, viewed as integers in [Formula presented], sum to 0 in Z. In this paper we study the existence of an integer Ht(m,n;s,k) when s and k are both even, proving the following results. Suppose that 4≤s≤n and 4≤k≤m are such that ms=nk. Let t be a divisor of 2ms. (a) If s,k≡0(mod4), there exists an integer Ht(m,n;s,k). (b) If s≡2(mod4) and k≡0(mod4), there exists an integer Ht(m,n;s,k) if and only if m is even. (c) If s≡0(mod4) and k≡2(mod4), then there exists an integer Ht(m,n;s,k) if and only if n is even. (d) Suppose that m and n are both even. If s,k≡2(mod4), then there exists an integer Ht(m,n;s,k).

On the existence of integer relative Heffter arrays / Morini, F.; Pellegrini, M. A.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 343:11(2020), p. 112088. [10.1016/j.disc.2020.112088]

On the existence of integer relative Heffter arrays

Morini F.;
2020-01-01

Abstract

Let v=2ms+t be a positive integer, where t divides 2ms, and let J be the subgroup of order t of the cyclic group Zv. An integer Heffter array Ht(m,n;s,k) over Zv relative to J is an m×n partially filled array with elements in Zv such that: (a) each row contains s filled cells and each column contains k filled cells; (b) for every x∈Zv∖J, either x or −x appears in the array; (c) the elements in every row and column, viewed as integers in [Formula presented], sum to 0 in Z. In this paper we study the existence of an integer Ht(m,n;s,k) when s and k are both even, proving the following results. Suppose that 4≤s≤n and 4≤k≤m are such that ms=nk. Let t be a divisor of 2ms. (a) If s,k≡0(mod4), there exists an integer Ht(m,n;s,k). (b) If s≡2(mod4) and k≡0(mod4), there exists an integer Ht(m,n;s,k) if and only if m is even. (c) If s≡0(mod4) and k≡2(mod4), then there exists an integer Ht(m,n;s,k) if and only if n is even. (d) Suppose that m and n are both even. If s,k≡2(mod4), then there exists an integer Ht(m,n;s,k).
2020
On the existence of integer relative Heffter arrays / Morini, F.; Pellegrini, M. A.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 343:11(2020), p. 112088. [10.1016/j.disc.2020.112088]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0012365X20302740-main.pdf

non disponibili

Descrizione: On the existence of integer relative He ter arrays DM
Tipologia: Versione (PDF) editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 859.48 kB
Formato Adobe PDF
859.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
RectangularHeffter-accepted.pdf

accesso aperto

Descrizione: On the existence of integer relative He ter arrays
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 440.6 kB
Formato Adobe PDF
440.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11381/2879826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact