Forests, including their soils, play an important role since they represent a large reservoir of biodiversity. Current studies show that the diversity of soil fauna provides multiple ecosystem functions and services across biomes. However, anthropogenic practices often pose a threat to soil fauna because of changes in land use and soil mismanagement. In these terms, rangelands in the southwest of Spain present several problems of soil degradation related to livestock activity and soil erosion, the intensity of which compromises the soil fauna's functions in the ecosystem. Therefore, the aim of this study is to evaluate the response of community metrics and the spatial distribution of soil microarthropods to livestock activity and vegetation in such ecosystems. A photo interpretation analysis of an experimental catchment used as a study area was developed to identify and classify the intensity of livestock pressure. A total of 150 soil samples were collected throughout 2018. Soil biological (CO2 efflux) and physical-chemical parameters (pH, bulk density, organic matter, and water contents), and such meteorological variables as precipitation, temperature, and evapotranspiration were considered as variables affecting the composition of microarthropod communities in terms of taxa diversity, abundances, and their adaptation to soil environment (evaluated by QBS-ar index). Results showed higher abundance of microarthropods and higher adaptation to soil environment outside the influence of trees rather than beneath tree canopies. Moreover, the classification of livestock pressure revealed by the photo interpretation analysis showed low correlations with community structure, as well as with the occurrence of well-adapted microarthropod groups that were found less frequently in areas with evidence of intense livestock activity. Furthermore, abundances and adaptations followed different spatial patterns. Due to future climate changes and increasing anthropogenic pressure, it is necessary to continue the study of soil fauna communities to determine their degree of sensitivity to such changes.
Effects of livestock pressure and vegetation cover on the spatial and temporal structure of soil microarthropod communities in Iberian rangelands / Fondon, C. L.; Gonzalez, J. B.; Fernandez, M. P.; Remelli, S.; Lozano-Parra, J.; Menta, C.. - In: FORESTS. - ISSN 1999-4907. - 11:6(2020), p. 628. [10.3390/F11060628]
Effects of livestock pressure and vegetation cover on the spatial and temporal structure of soil microarthropod communities in Iberian rangelands
Remelli S.;Menta C.
2020-01-01
Abstract
Forests, including their soils, play an important role since they represent a large reservoir of biodiversity. Current studies show that the diversity of soil fauna provides multiple ecosystem functions and services across biomes. However, anthropogenic practices often pose a threat to soil fauna because of changes in land use and soil mismanagement. In these terms, rangelands in the southwest of Spain present several problems of soil degradation related to livestock activity and soil erosion, the intensity of which compromises the soil fauna's functions in the ecosystem. Therefore, the aim of this study is to evaluate the response of community metrics and the spatial distribution of soil microarthropods to livestock activity and vegetation in such ecosystems. A photo interpretation analysis of an experimental catchment used as a study area was developed to identify and classify the intensity of livestock pressure. A total of 150 soil samples were collected throughout 2018. Soil biological (CO2 efflux) and physical-chemical parameters (pH, bulk density, organic matter, and water contents), and such meteorological variables as precipitation, temperature, and evapotranspiration were considered as variables affecting the composition of microarthropod communities in terms of taxa diversity, abundances, and their adaptation to soil environment (evaluated by QBS-ar index). Results showed higher abundance of microarthropods and higher adaptation to soil environment outside the influence of trees rather than beneath tree canopies. Moreover, the classification of livestock pressure revealed by the photo interpretation analysis showed low correlations with community structure, as well as with the occurrence of well-adapted microarthropod groups that were found less frequently in areas with evidence of intense livestock activity. Furthermore, abundances and adaptations followed different spatial patterns. Due to future climate changes and increasing anthropogenic pressure, it is necessary to continue the study of soil fauna communities to determine their degree of sensitivity to such changes.File | Dimensione | Formato | |
---|---|---|---|
Fondon et al., Forest 2020.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
2.93 MB
Formato
Adobe PDF
|
2.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.