Most recent computer vision tasks take into account the distribution of image features to obtain more powerful models and better performance. One of the most commonly used techniques to this purpose is the diffusion algorithm, which fuses manifold data and k-Nearest Neighbors (kNN) graphs. In this paper, we describe how we optimized diffusion in an image retrieval task aimed at mobile vision applications, in order to obtain a good trade-off between computation load and performance. From a computational efficiency viewpoint, the high complexity of the exhaustive creation of a full kNN graph for a large database renders such a process unfeasible on mobile devices. From a retrieval performance viewpoint, the diffusion parameters are strongly task-dependent and affect significantly the algorithm performance. In the method we describe herein, we tackle the first issue by using approximate algorithms in building the kNN tree. The main contribution of this work is the optimization of diffusion parameters using a genetic algorithm (GA), which allows us to guarantee high retrieval performance in spite of such a simplification. The results we have obtained confirm that the global search for the optimal diffusion parameters performed by a genetic algorithm is equivalent to a massive analysis of the diffusion parameter space for which an exhaustive search would be totally unfeasible. We show that even a grid search could often be less efficient (and effective) than the GA, i.e., that the genetic algorithm most often produces better diffusion settings when equal computing resources are available to the two approaches. Our method has been tested on several publicly-available datasets: Oxford5k, ROxford5k, Paris6k, RParis6k, and Oxford105k, and compared to other mainstream approaches.

Diffusion Parameters Analysis in a Content-Based Image Retrieval Task for Mobile Vision / Magliani, Federico; Sani, Laura; Cagnoni, Stefano; Prati, Andrea. - In: SENSORS. - ISSN 1424-8220. - 20:16(2020), p. 4449. [10.3390/s20164449]

Diffusion Parameters Analysis in a Content-Based Image Retrieval Task for Mobile Vision

Magliani, Federico
Software
;
Sani, Laura
Software
;
Cagnoni, Stefano
Writing – Review & Editing
;
Prati, Andrea
Writing – Review & Editing
2020

Abstract

Most recent computer vision tasks take into account the distribution of image features to obtain more powerful models and better performance. One of the most commonly used techniques to this purpose is the diffusion algorithm, which fuses manifold data and k-Nearest Neighbors (kNN) graphs. In this paper, we describe how we optimized diffusion in an image retrieval task aimed at mobile vision applications, in order to obtain a good trade-off between computation load and performance. From a computational efficiency viewpoint, the high complexity of the exhaustive creation of a full kNN graph for a large database renders such a process unfeasible on mobile devices. From a retrieval performance viewpoint, the diffusion parameters are strongly task-dependent and affect significantly the algorithm performance. In the method we describe herein, we tackle the first issue by using approximate algorithms in building the kNN tree. The main contribution of this work is the optimization of diffusion parameters using a genetic algorithm (GA), which allows us to guarantee high retrieval performance in spite of such a simplification. The results we have obtained confirm that the global search for the optimal diffusion parameters performed by a genetic algorithm is equivalent to a massive analysis of the diffusion parameter space for which an exhaustive search would be totally unfeasible. We show that even a grid search could often be less efficient (and effective) than the GA, i.e., that the genetic algorithm most often produces better diffusion settings when equal computing resources are available to the two approaches. Our method has been tested on several publicly-available datasets: Oxford5k, ROxford5k, Paris6k, RParis6k, and Oxford105k, and compared to other mainstream approaches.
File in questo prodotto:
File Dimensione Formato  
sensors-20-04449.pdf

accesso aperto

Tipologia: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11381/2879498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact